期刊文献+

蜂群优化的二维非对称Tsallis交叉熵图像阈值选取 被引量:7

Two-dimensional asymmetric tsallis cross entropy image threshold selection using bee colony optimization
下载PDF
导出
摘要 交叉熵能够度量图像分割前后的差异,与Shannon交叉熵相比,引入参数q的Tsallis交叉熵则为图像阈值分割提供了灵活性和普适性,而非对称Tsallis交叉熵的表达形式更加简洁。由此,提出了蜂群优化的二维非对称Tsallis交叉熵图像阈值选取方法。首先引出了非对称Tsallis交叉熵,导出了二维非对称Tsallis交叉熵阈值选取公式,并利用递推方式计算阈值选取准则函数涉及的中间变量,建立查找表,消除冗余运算;然后采用蜂群算法搜寻最佳二维阈值。大量实验结果表明,相对二维最大Shannon熵法、二维Shannon交叉熵法、二维Tsallis熵法和二维对称Tsallis交叉熵法等同类方法,所提出方法在主观视觉效果和区域间对比度评价指标上有较大的改善,能够更准确地分割出目标,运行速度也更快。 Cross entropy can measure the difference between the original image and its segmentation result. Compared with Shannon cross entropy,Tsallis cross entropy,in which a parameter q is introduced,provides flexibility and universality for the segmentation of image threshold. The asymmetric Tsallis cross entropy has more concise expression form. Therefore,a method of threshold selection is proposed based on the two-dimensional asymmetric Tsallis cross entropy using bee colony optimization. Firstly,the asymmetric Tsallis cross entropy is introduced and the threshold selection formulae based on the two-dimensional asymmetric Tsallis cross entropy are derived. Recursive algorithms are used to calculate the intermediate variables involved in criterion function for threshold selection and a lookup table is built to eliminate the redundant operations. The optimal two-dimensional threshold is searched by the bee colony algorithm. A large number of experiment results showed that the proposed method is greatly improved in terms of subjective visual effect and inter-regional contrast evaluation indicators compared to the relevant methods,such as the two-dimensional maximum Shannon entropy method,the two-dimensional Shannon cross entropy method,the two-dimensional Tsallis entropy method,and the two-dimensional symmetrical Tsallis cross entropy method.It can segment objects more accurately and has a faster running speed.
出处 《智能系统学报》 CSCD 北大核心 2015年第1期103-112,共10页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60872065) 江苏省粮油品质控制及深加工技术重点实验室开放基金资助项目(LYPK201304) 江苏省制浆造纸科学技术重点实验室开放基金资助项目(201313)
关键词 图像分割 阈值选取 二维 Tsallis交叉熵 递推算法 蜂群优化 区域间对比度 image segmentation threshold selection two-dimension Tsallis cross entropy recursive algorithms bee colony optimization inter-regional contrast
  • 相关文献

参考文献8

二级参考文献71

共引文献260

同被引文献64

  • 1朱宁,施荣华,吴科桦.一种新的点模式指纹匹配方法[J].计算机工程与应用,2006,42(5):74-76. 被引量:11
  • 2潘喆,吴一全.二维Renyi熵图像阈值选取快速递推算法[J].中国体视学与图像分析,2007,12(2):93-97. 被引量:10
  • 3Shannon C E. A mathematical theory of communication [ J ]. The Bell System Technical Journal,1948,27:379 -423.
  • 4Kaput J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram[ J]. Com- put Vision Graphics Image Process,1985,29:273-285.
  • 5Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation[ J ]. Journal of Electronic Imaging ,2004,13 : 146 -165.
  • 6Sarkar S, Das S, Chaudhuri S S. A multilevel color image threshol- ding scheme based on minimum cross entropy and differential evolu- tion[J]. Pattern Recognition Letters,2015,54:27 -35.
  • 7Albuquerque M P, Esquef I A,Mello A,et al. Image threstmhting using Tsallis entropy [ J ]. Pattern Recognition Lettets ,2004,25 : 1059 -1065.
  • 8Tsallis C. Possible generalization of Boltzmann-Gibbs statistics [ J ]. J Star Phys, 1988,52:480 -487.
  • 9Lin Q, Ou C. Tsallis entropy and the long-range con'elation in image thresholding [ J ]. Signal Processing, 2012,92 : 2931 - 2939.
  • 10Kapur JN,Sahoo PK,Wong A.A new method for gray-level picture thresholding using the entropy of the histogram.Computer Vision,Graphics,and Image Processing,1985,29(3):273-285.

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部