摘要
协同定位是多机器人自主行为的一项重要技术,重点描述了无线传感器网络环境下结合粒子群优化提出多机器人协同定位算法。该算法引入重采样,解决了粒子耗尽问题,扩大了解空间的范围,保证了种群的多样性,并且引入了惯性权重解决了粒子退化的问题。仿真结果表明,利用无线传感器网络进行辅助导航,采用粒子群优化算法,综合无线传感器网络进行辅助导航,融合各个机器人观测信息,可以降低求解问题的空间维数,在高斯噪声下能有效提高移动机器人定位精度。
Cooperative localization is an important technique of multi-robot's autonomous behavior. In this paper,the multi-robot cooperative localization algorithm based on the optimization of particle swarm optimization under wireless sensor network environment is described. The resampling algorithm is introduced to solve the problem of particle depletion,enlarge the scope of solution space and guarantee the diversity of population. The introduction of inertia weight provides a solution for the particle degradation. Simulation results showed that by using the particle swarm optimization algorithm,which is supported by wireless sensor network to assist navigation and integrating robots' observation information,the spatial dimensions of the problem can be reduced. In addition,the accuracy of robot localization can be improved effectively under the background of Gaussian noise.
出处
《智能系统学报》
CSCD
北大核心
2015年第1期138-142,共5页
CAAI Transactions on Intelligent Systems
基金
国家自然科学基金资助项目(60705035
61075087
61203331)
湖北省重点实验室开放基金重点资助项目(Z201102)
河南省高等学校控制工程重点学科开放基金资助项目(KG2011-01)
湖北省教育厅科研计划重点资助项目(D20131105)
湖北省科技计划自然科学基金重点资助项目(2010CDA005)
关键词
粒子群优化
多机器人
协同定位
无线传感器网络
重采样
惯性权重
多信息融合
适应度函数
particle swarm optimization
multi-robot
cooperative localization
wireless sensor network
resampling
inertia weight
multiple information fusion
fitness function