期刊文献+

杂多酸对燃料电池质子交换膜稳定性的影响 被引量:7

Effects of heteropoly acid on stability of proton exchange membrane used in fuel cell
下载PDF
导出
摘要 采用硅烷偶联剂、磷钼酸及硅钨酸对全氟磺酸离子膜进行了表面改性,制备了燃料电池质子交换复合膜。测定了升温速率为5、10、20和30℃/min时的热重曲线及不同温度时膜的质子电导率。实验结果表明,复合膜的热分解过程经历三个阶段,热降解峰温向低温区偏移,并计算了第一和第二阶段的表观活化能。当温度高于363.3℃时,复合膜的热稳定性优于原膜;在-30~0℃和20~90℃区间,原膜与复合膜的质子电导率均随温度的升高而增大,复合膜的质子电导率明显优于原膜。 Using silane coupling agent and phosphomolybdic acid and silicon tungsten acid to modify the surface of perfluorinated sulfonic acid ion-exchange membrane, the composite membrane used in fuel cells was prepared.When the heating rate respectively was 5, 10, 20 and 30 ℃/min, TGA curves and proton conductivity at different temperatures were determined. Experimental results show that the thermal decomposition process of composite membranes are through three stages. The peak temperature of thermal degradation was moved toward the low temperature zone offset, the apparent activation energy of the first and second stages were calculated. When the temperature was higher than 363.3 ℃, thermal stability of the composite film was better than the original membrane.At-30 ℃ to 0 ℃ and 20 ℃ to 90 ℃ range, proton conductivity of original membrane and composite membrane were gradually increased with the increase of the temperature, proton conductivity of the composite film was better than the original film.
出处 《电源技术》 CAS CSCD 北大核心 2015年第3期484-487,596,共5页 Chinese Journal of Power Sources
基金 安徽省国际科技合作计划资助项目(06088018) 淮南市科技计划资助项目(2011A07923)
关键词 质子交换膜 杂多酸 表面处理 质子电导率 proton exchange membrane heteropolyacids surface treatment proton conductivity
  • 相关文献

参考文献10

  • 1ZHANG H W, SHEN P K. Recent development of polymer elec- trolyte membranes for fuel cells [J]. Chem Rev, 2012, 112 (5): 2780-2832.
  • 2魏风,鲁伊恒,刘伟龙,李寒旭,陈明强.质子交换膜的热降解行为[J].电源技术,2012,36(12):1819-1823. 被引量:4
  • 3ANIS A, AL-ZAHRANI S M, BANTHIA A K, et al. Fabrication and characterization of novel crosslinked composite membranes for di- rect methanol fuel cell application - part I. poly (vinyl alcohol-Co- vinyl acetate-Co-itaconic acid)/phosphotungstic acid based mem- branes[J]. Int J Electrochem Sci, 2011 (7): 2461-2487.
  • 4杨金燕,魏小兰,黄敏文.低湿度下质子交换膜燃料电池的交流阻抗分析[J].中山大学学报(自然科学版),2010,49(6):132-135. 被引量:3
  • 5马宁,蔡芳昌,殷浩,张红星,蒋涛.交流阻抗法测试质子交换膜电导率的影响因素[J].高分子材料科学与工程,2012,28(11):125-128. 被引量:16
  • 6侯俊波,俞红梅,邵志刚,衣宝廉.质子交换膜燃料电池的0℃以下耐受性[J].电池,2007,37(6):411-414. 被引量:6
  • 7鲁伊恒,魏风,吕玉卫,刘伟龙,李寒旭,陈明强.纳米SiO_2表面处理对质子交换膜热稳定性的影响[J].高分子材料科学与工程,2013,29(1):79-83. 被引量:5
  • 8SAHU A K, JALAJAKSHI A, PITCHUMANI S, et al. Endurance of Nation-composite membranes in PEFCs operating at elevated tem- perature under low relative-humidity[J]. J Chcm Sci, 2012, 124(2): 529-536.
  • 9KE C C,LI X J,SHEN Q,et al. Investigation on sulfuric acid sul- fonation of in-situ sol-gel derived Nafiort/SiO2 composite membrane [J]. International Journal of Hydrogen Energy, 2011, 36(5): 3606- 3613.
  • 10TIAN H, SAVADOGO O. Silicotungstie acid Nation composite membrane for proton-exchange membrane fuel cell operation at high temperantre[J]. JoumM of New Materials for Electrochemical Systems, 2006,9:61-71.

二级参考文献51

  • 1张生生,俞红梅,朱红,侯俊波,衣宝廉,明平文.Effects of Freeze/Thaw Cycles and Gas Purging Method on Polymer Electrolyte Membrane Fuel Cells[J].Chinese Journal of Chemical Engineering,2006,14(6):802-805. 被引量:7
  • 2任学佑.质子交换膜燃料电池开发现状[J].电池,2004,34(6):455-456. 被引量:8
  • 3胡荣祖,史启祯,高胜利,等.热分析动力学[M].2版.北京:科学出版社,2008.
  • 4WAKIZOE M, VELEV O A, SRINIVASAN S. Analysis of proton exchange membrane fuel cell performance with alternate membranes [ J]. Electrochim Acta, 1995,40 (3) : 335 -344.
  • 5ZENG R, WANG Y, WANG S L, et al. Homogeneous synthesis of PFSI/silica composite membranes for PEMFC operating at low humidity [ J ]. Electrochim Acta, 2007, 52 : 3895 - 3900.
  • 6GOMADAM P M, WEIDNER J W. Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells [ J ]. Int J Energy Res, 2005, 29 : 1133 - 1151.
  • 7VARCOEJ R, SLADE R C T, WRIGHT G L, at al. Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes [ J ]. J Phys Chem B, 2006, 110: 21041 -21049.
  • 8CIUREANU M, ROBERGE R. Electrochemical impedance study of PEM fuel cells: experimental diagnostics and modeling of air cathods[J]. J Phys Chem B, 2001, 105 : 3531 -3539.
  • 9PAGANIN V A, OLIVEIRA C L F, TICIANELLI E A, et al. Modelistic interpretation of the impedance response of a polymer electrolyte fuel cell [ J ]. Electrochim Acta, 1998, 43 : 3761 -3766.
  • 10FREIRE T J P, GONZALEZ E R. Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells [ J ]. J Electroanal Chem, 2001, 503:57-68.

共引文献25

同被引文献40

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部