期刊文献+

一类具有非单调生长率的捕食-食饵系统的动力学 被引量:2

Dynamics research in a predator-prey system with a nonlinear growth rate
原文传递
导出
摘要 研究了齐次Dirichlet边界条件下一类捕食-食饵系统的动力学,其中捕食者种群具有非单调生长率1/(1+ev)。利用隐函数定理,分歧理论和摄动技巧,得到了系统正平衡态的存在性,唯一性和稳定性,并通过数值模拟补充验证了相应的理论结果。 The paper is concerned with a predator-prey diffusive dynamics subject to homogeneous Dirichlet boundary conditions,where the predator population reproduces by the nonlinear function 1 /( 1 + ev). Existence and uniqueness of coexistence states for the predator-prey system are investigated. M oreover,some asymptotic behaviors of time-dependent solutions are shown and some numerical simulations are done to complement the analytical results. The main tools used here include the implicit function theorem,the bifurcation theory and the perturbation technique.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2015年第3期80-87,94,共9页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11271236) 中央高校基本科研业务费专项资金资助项目(GK201302025 GK201303008 GK201401004)
关键词 反应扩散方程 正解 唯一性 稳定性 数值模拟 reaction-diffusion equations positive solution uniqueness stability numerical simulation
  • 相关文献

参考文献15

  • 1BLAT J, BROWN K J, Global bifurcation of positive solutions in some systems of elliptic equations[ J ]. SIAM J Math Anal, 1986, 17(6) :1339-1353.
  • 2DE IA SEN M. The generalized Beverton-Holt equation and the control of populations [ J ]. Appl Math Model, 2008, 32 ( 11 ) : 2312-2328.
  • 3DE IA SEN M, ALONSO-QUESADA S. Control issues for the Beverton-Holt equation in ecology by locally monitonng the environment carrying capacity : Non-adaptive and adaptive cases [ J ]. Appl Math Comput, 2009, 215 ( 7 ) : 2616-2633.
  • 4ERBACH A, LUTSCHER F, SEO G. Bistability and limit cycles in generalist predator-prey dynamics[ J]. Ecol Comple, 2013, 14:48-55.
  • 5HSU S B, HWANG T W, KUANG Y. Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system [J]. J Math Biol, 2001,42(6):489-506.
  • 6KUANG Y, BERETTA E. Global qualitative analysis of a ratio-dependent predator-prey system [ J]. J Math Biol, 1998, 36 (4) :389-406.
  • 7PAO C V. Nonlinear parabolic and elliptic equations [ M]. New York: Plenum Press, 1992.
  • 8PROTTER M H, WEINBERGER H F. Maximum principles in differential equations [ M ]. New York: Springer-Verlag, 1984.
  • 9SCHAEFER H H. Topological vector spaces[M]. New York: Springer, 1971.
  • 10SMOLLER J. Shock waves and reaction-diffusion equations[ M]. New York: Springer-Verlag, 1994.

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部