摘要
研究了齐次Dirichlet边界条件下一类捕食-食饵系统的动力学,其中捕食者种群具有非单调生长率1/(1+ev)。利用隐函数定理,分歧理论和摄动技巧,得到了系统正平衡态的存在性,唯一性和稳定性,并通过数值模拟补充验证了相应的理论结果。
The paper is concerned with a predator-prey diffusive dynamics subject to homogeneous Dirichlet boundary conditions,where the predator population reproduces by the nonlinear function 1 /( 1 + ev). Existence and uniqueness of coexistence states for the predator-prey system are investigated. M oreover,some asymptotic behaviors of time-dependent solutions are shown and some numerical simulations are done to complement the analytical results. The main tools used here include the implicit function theorem,the bifurcation theory and the perturbation technique.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2015年第3期80-87,94,共9页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11271236)
中央高校基本科研业务费专项资金资助项目(GK201302025
GK201303008
GK201401004)
关键词
反应扩散方程
正解
唯一性
稳定性
数值模拟
reaction-diffusion equations
positive solution
uniqueness
stability
numerical simulation