期刊文献+

Hyper-exponential jump-diffusion model under the barrier dividend strategy 被引量:1

Hyper-exponential jump-diffusion model under the barrier dividend strategy
下载PDF
导出
摘要 In this paper, we consider a hyper-exponential jump-diffusion model with a constant dividend barrier. Explicit solutions for the Laplace transform of the ruin time, and the Gerber- Shiu function are obtained via martingale stopping. In this paper, we consider a hyper-exponential jump-diffusion model with a constant dividend barrier. Explicit solutions for the Laplace transform of the ruin time, and the Gerber- Shiu function are obtained via martingale stopping.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2015年第1期17-26,共10页 高校应用数学学报(英文版)(B辑)
基金 Supported by the Natural Science Foundation of Jiangsu Province(BK20130260) the National Natural Science Foundation of China(11301369) the Postdoctoral Science Foundation of China(2013M540371)
关键词 reflected jump-diffusion process barrier strategy ruin time Gerber-Shiu function hyper-exponential distribution. reflected jump-diffusion process, barrier strategy, ruin time, Gerber-Shiu function, hyper-exponential distribution.
  • 相关文献

参考文献12

  • 1L J Bo, R M Song, D Tang, Y J Wang, X W Yang. Ldvy risk model with two-sided jumps and a barrier dividend strategy, Insurance Math Econom, 2012, 50: 280-291.
  • 2N Cai,S G Kou. Option pricing under a mixed-exponential jump diffusion model, Manage Sci, 2011, 57: 2067-2081.
  • 3B De Finetti. Su unimpostazione alternativa dell teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 1957, 2: 433-443.
  • 4HU Gerber. An extension of the renewal equation and its application in the collective theory of risk, Skandinavisk Aktuarietidskrift, 1970, 205-210.
  • 5H U Gerber, B Landry. On the discounted penalty at ruin in a jump-diffusion and the perpetual put option, Insurance Math Econom, 1998, 22: 263-276.
  • 6HUGerber ESWShiu. On the time value of ruin, N Am Actuar J, 1998, 2: 48-72.
  • 7S G Kou, H Wang. First passage times of a jump diffusion process, Adv in Appl Probab, 2003, 35: 427-445.
  • 8C Labb6a, H S Sendov, K P Sendova. The Gerber-Shiu function and the generalized Cramdr- Lundberg model, Appl Math Comput, 2011, 218: 3035-3056.
  • 9M RPistorius. On exit and ergodicity of the spectraUy one-sided Ldvy process reflected at its infimum, J Theoret Probab, 2004, 17: 183-220.
  • 10KCYuen, CCYin. On optimality of the barrier strategy for a general Ldvy risk process, Math Comput Modelling, 2011 53: 1700-1707.

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部