期刊文献+

基于移动传感器网络的气体源定位 被引量:7

Gas Source Localization Based on Mobile Sensor Network
下载PDF
导出
摘要 针对目前基于无线传感器网络定位气体源方法中存在的因探索区域尺寸、边界等先验知识缺失而造成节点部署困难的问题,提出了一种使用有限个低成本机器人构成移动传感器网络进行气体源定位的方法.该方法中,首先以期望拓扑结构排列的移动传感器网络节点采集气体浓度并上传至上位机;然后上位机使用非线性最小二乘方法对气体源位置进行估计,并将位置估计结果发送给移动传感器网络节点;最后由移动节点计算出目标位姿,并采用饱和控制的方法镇定到该位姿.通过上述步骤的不断循环,移动传感器网络最终将移动到气体源附近,从而实现对气体源较为精确的定位.室内自然通风环境中,使用6个自制的机器人组成具有固定圆形拓扑的移动传感器网络进行了气体源定位实验.实验结果表明,适当选择拓扑半径,该方法可在6,min左右实现精度为30,cm的气体源定位. Considering the difficulty in deploying the nodes for the wireless-sensor-network-based gas source local-ization(GSL)methods owing to the lack of the prior knowledge such as the detecting area and the boundary,this paper addresses a GSL method using the mobile sensor network(MSN)which is composed of a limited number of low-cost robots. In this method,firstly,the MSN nodes with expected topology collect gas concentration and send it to a central node;Secondly,the central node estimates the gas source location using a nonlinear least square method and sends the outcome to the MSN nodes;Finaly,the MSN nodes calculate the target pose and the nodes are stabi-lized near the target using saturation control. Through repeating the above cycles,the MSN nodes can eventually approach the gas source. Experiments in an indoor ventilated environment show that a GSL accuracy of 30 cm within about six minutes could be achieved.
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2015年第2期139-146,共8页 Journal of Tianjin University:Science and Technology
基金 国家自然科学基金资助项目(61271321 60875053) 教育部博士点基金资助项目(20120032110068)
关键词 移动传感器网络 气体源定位 非线性最小二乘 动态部署 mobile sensor network gas source localization nonlinear least squares dynamic deployment
  • 相关文献

参考文献15

  • 1Zhao F, Shin J, Reich J. Information-driven dynamic sensor collaboration for tracking applications [J]. IEEE SignalProeessing Magazine, 2002, 19 (3) : 61-72.
  • 2Vijayakumaran S, Levinbook Y, Wong T F. Maximum likelihood localization of a diffusive point source using binary observations [J]. IEEE Transactions on Signal Processing, 2007, 55(2): 665-676.
  • 3匡兴红,邵惠鹤.基于传感器网络的气体源定位方法研究[J].系统仿真学报,2007,19(7):1464-1467. 被引量:17
  • 4Zarzhitsky D, Spears D. Swarm approach to chemical source localization [C]//IEEE International Conference on Systems, Man and Cybernetics. Waikoloa: IEEE Press, 2005: 1435-1440.
  • 5Hayes A T, Martinoli A, Goodman R M. Distributed odor source localization [J]. Sensors Journal, IEEE, 2002, 2(3): 260-271.
  • 6Meng Q H, Yang W X, Wang Y, et al. Collective odor source estimation and search in time-variant airflowenvironments using mobile robots [J]. Sensors, 2011, 11 (11) : 10415-10443.
  • 7张建化,巩敦卫,张勇.基于微粒群优化的有限通信多机器人气味寻源[J].控制与决策,2013,28(5):726-730. 被引量:8
  • 8骆德汉,邹宇华,庄家俊.基于修正蚁群算法的多机器人气味源定位策略研究[J].机器人,2008,30(6):536-541. 被引量:11
  • 9Jones C. On the structure of instantaneous plumes in the atmosphere [J]. Journal of Hazardous Materials, 1983, 7(2): 87-112.
  • 10Ishida H, Kagawa Y, Nakamoto T, et al. Odor-source localization in the clean room by an autonomous mobile sensing system [J]. Sensors and Actuators B: Chemical, 1996, 33(1/2/3): 115-121.

二级参考文献37

  • 1王常青,操云甫,戴国忠.用双向收敛蚁群算法解作业车间调度问题[J].计算机集成制造系统,2004,10(7):820-824. 被引量:31
  • 2金飞虎,洪炳熔,高庆吉.基于蚁群算法的自由飞行空间机器人路径规划[J].机器人,2002,24(6):526-529. 被引量:52
  • 3陈卓,孟庆春,魏振钢.基于群体智能理论的聚类模型及优化算法[J].计算机工程,2005,31(4):34-36. 被引量:8
  • 4李俊彩,孟庆浩,梁琼.基于进化梯度搜索的机器人主动嗅觉仿真研究[J].机器人,2007,29(3):234-238. 被引量:17
  • 5Vickers N J. Mechanisms of animal navigation in odor plumes[J]. The Biological Bulletin, 2000, 198(2): 203-212.
  • 6Grasso F W, Consi T R, Mountain D C, et al. Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: Progress and challenges[J]. Robotics and Autonomous Systems, 2000, 30(1): 115-131.
  • 7Russell R A, Thiel D, Deveza R, et al. A robotic system to locate hazardous chemical leaks[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 1995. 556-561.
  • 8Ishida H, Nakamoto T, Moriizumi T. Remote sensing of gas/odor source location and concentration distribution using mobile system[J]. Sensors and Actuators, B: Chemical, 1998, B49(1-2): 52-57.
  • 9Farah A M, Duckett T. Reactive localization of an odour source by a learning mobile robot[DB/OL], ftp://aass.oru.se/pub/tdt/ mohamod_duckett.ps.gz, 2002/2008.
  • 10Fan'ell J A, Murlis J, Long X Z, et aL Filament-based atmospheric dispersion model to achieve short time-scale structure of odor plumes[J]. Environmental Fluid Mechanics, 2002, 2(1-2): 143-169.

共引文献31

同被引文献49

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部