摘要
We reported the influence of interface trap density(Nt) on the electrical properties of amorphous InSnZnO based thin-film transistors,which were fabricated at different direct-current(DC) magnetron sputtering powers.The device with the smallest Nt of 5.68×10^11 cm^-2 and low resistivity of 1.21×10^-3Ω·cm exhibited a turn-on voltage(V(ON)) of-3.60 V,a sub-threshold swing(S.S) of 0.16 V/dec and an on-off ratio(I(ON)/I(OFF)) of^8 x 10^8.With increasing Nt,the V(ON),S.S and I(ON)/I(OFF) were suppressed to-9.40 V,0.24 V/dec and 2.59×10^8,respectively.The V(TH) shift under negative gate bias stress has also been estimated to investigate the electrical stability of the devices.The result showed that the reduction in Nt contributes to an improvement in the electrical properties and stability.
We reported the influence of interface trap density(Nt) on the electrical properties of amorphous InSnZnO based thin-film transistors,which were fabricated at different direct-current(DC) magnetron sputtering powers.The device with the smallest Nt of 5.68×10^11 cm^-2 and low resistivity of 1.21×10^-3Ω·cm exhibited a turn-on voltage(V(ON)) of-3.60 V,a sub-threshold swing(S.S) of 0.16 V/dec and an on-off ratio(I(ON)/I(OFF)) of^8 x 10^8.With increasing Nt,the V(ON),S.S and I(ON)/I(OFF) were suppressed to-9.40 V,0.24 V/dec and 2.59×10^8,respectively.The V(TH) shift under negative gate bias stress has also been estimated to investigate the electrical stability of the devices.The result showed that the reduction in Nt contributes to an improvement in the electrical properties and stability.