期刊文献+

流式细胞仪系统中液体变焦透镜的设计与制作

Design and fabrication of the liquid tunable lens in microfluidic cytometer system
原文传递
导出
摘要 以聚二甲基硅烷(PDMS)为基础,设计制作了一种封闭式液体变焦透镜。通过对PDMS薄膜形变情况的仿真分析,利用Matlab数学建模与ANSYS结构仿真,得到薄膜形变结果,确定了合理的透镜腔体结构。在制备工艺上,首先利用SU-8模型制作了PDMS透镜腔,再使用混合PDMS制作出腔体的盖片;然后将两部分进行表面处理后键合,注射填充液、完成二次封装;最后对透镜的表面形变和焦距变化进行了测试,根据测试结果绘制了焦距-磁通量曲线。测试中,在磁通量从200mT到600mT的过程中,焦距由22.0mm变为20.2mm。结果表明,以本文方法制作变焦透镜,可以简化工艺步骤,降低制造成本,减小整体体积,焦距可控,有着更好的密封性,受外界环境干扰小。 The liquid closed tunable lens has been designed and made based on polydimethylsiloxane (PDMS). The appropriate structure of lens is decided according to mathematical analysis in Matlab soft- ware and structure simulation of PDMS film deformation in ANSYS software. In preparation process, firstly,the chamber of lens is fabricated with an SU-8 mold~ secondly, cover-film is made by using the mixed PDMS,and then two parts of lens are bonding together after surface treatment. After liquid injec- tion and secondary bonding,the whole process was accomplished. Finally, surface deformation and focal distance of the lens are tested with a testing device, and according to the test result, the curve between focal distance and magnetic flux density is plotted. In this process, with the magnetic flux density chan- ging from 200 mT to 600 mT,the focal distance changes from 22.0 mm to 20. 2 mm under the electro- magnetic loads. Results show that fabricating tunable lens with this method can simplify processing se- quence, lower production cost, and reduce the whole structure volume. Moreover, the finished product has controllable focal distance and great sealing property, so the surrounding will have minimal effect on the performance of lens, which may open new possibilities in medical service, optical testing and other fields.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第2期403-408,共6页 Journal of Optoelectronics·Laser
基金 国家自然基金(61401405,51475438) 山西省基础研究(2014011021-4) 新世纪优秀人才支持计划(130951862)资助项目
关键词 变焦透镜 薄膜形变 聚焦测试 tunable lens film aberration focusing test
  • 相关文献

参考文献20

  • 1Berman D, Krim J. Surface science, MEMS and NEMS: Progress and opportunities for surface science research performed on,or by. micro devices[J]. Progress in Sur- face Science, 2{) 13.88 ( 2 ) : 171-21 1.
  • 2Andrea Lucibello, Emanuela Proietti, Romolo Marcelli, etal. Smoothing and surface planarization of sacrificial lay- ers in MEMS technology[J]. Microsystem Technologies, 2014,19(6) :845-851.
  • 3Andreas Tortschanoff, Baumgart M, Holzmann D, et al. Compact optical position feedback scheme for MOEMS mirrors[J]. Microsystem Technologies, 2014,20 ( 4-5 ) : 743-749.
  • 4YAO Bao-yin, FENG Li-shuang, WANG Xiao, et al. Design of out-of-plane MOEMS accelerometer with subwave- length gratings[J]. Photonics Technology Letters, 2014, 26(10) : 1027-1030.
  • 5Dey P K, Ganguly P. A technical report on fabrication of SU-8 optical waveguides[J]. Journal of Optics, 2014,43 (1):79-83.
  • 6Kiran Menon,Reenu Anne Joy,Neeru Sood,et al. The ap- plications of BioMEMS in diagnosis, cell biology, and ther- apy: a review[J]. BioNanoScience, 2013,3 (4) : 356-366.
  • 7Eric Nuxoll. BioMEMS in drug delivery[J]. Advanced Drug Delivery Reviews,2013,65(ll-12) :1611-1625.
  • 8Joonseonq Heo, Hyukjin J Kwon,Hyunqkook Jeon, et al. Ultra-high-aspect-orthogonal and tunable three dimen- sional polymeric nanochannel stack array for BioMEMS applications[J]. Nanoscal, 2014,6 : 9681-9688.
  • 9赵书涛,武晓东,王策,陈永勤,唐玉国.流式细胞仪的原理、应用及最新进展[J].现代生物医学进展,2011,11(22):4378-4381. 被引量:78
  • 10Rival A, Jary D, Delattre C, et al. An EWOD-based mi- crofluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR[J]. Lab on a Chip, 2014, 14:3739-3749.

二级参考文献39

  • 1张鸿海,胡晓峰,范细秋,刘胜.纳米压印光刻技术的研究[J].华中科技大学学报(自然科学版),2004,32(12):57-59. 被引量:12
  • 2李育林,傅晓理.微光学[J].光学精密工程,1994,2(1):1-8. 被引量:7
  • 3许乔,叶钧,周光亚,侯西云,杨国光,包正康,余中如.折射型微透镜列阵的光刻热熔法研究[J].光学学报,1996,16(9):1326-1331. 被引量:12
  • 4Peter AT, Jones PP, Robinson JP. Fractionation of bovine spermatozoa for sex selection: A rapid immunomagnetic technique to remove sper- matozoa that contain the H-Y antigen. [J]. Theriogenology, 1993,40: 1177-1185.
  • 5Shao Guo-cheng, Wang Wan-jun. A MEMS flow cytometer with inte-grated out-of-plane microlens and 3-D hydro-focus unit [J]. Proc. of SPIE, 2009, 7207:72070P1-7.
  • 6Yang R,Wang W. Out-of-plane polymer refractive micro- lens fabricated based on direct lithography of SU-8[J] Sensors and Actuators A: Physical ,2004,113( 1 );71-77.
  • 7Ohung O K, Hong Y. Fabrication and analysis of the re- flowed microlens arrays using JSR THB-130 N photoresistwith different heat treatments[J]. Microsystem Technolo- gies, 2007,13 (5-6) : 523-530.
  • 8Borrelli N F, Morse D L, Bellman R H, et al. Photolytic technique for producing microlenses in photosensitive glass[J]. Applied optics, 1985,24(16) :2520-2525.
  • 9Oikawa M, Iga K, Sanada T,et al. Array of distributed-in- dex planar micro-lenses prepared from ion exchange technique[J]. Japanese Journal of Applied Physics, ]981, 20(4) : 296-298.
  • 10Yu W,Yuan X. UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive micro- lens by use of a grayscale mask[J]. Optics Express, 2003,11(18) :2253-2258.

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部