期刊文献+

一种三维弹道目标跟踪的粒子滤波方法 被引量:1

A Particle Filter for 3D Ballistic Target Tracking
下载PDF
导出
摘要 针对三维弹道目标,给出了一种有效的基于粒子滤波的跟踪算法。这种算法以标准的粒子滤波算法为基础,根据贝叶斯原理利用局部线性化技术获得最佳近似的重要性密度函数以避免粒子退化现象,并且利用Metropolis-Hastings(MH)采样构造的马尔科夫链得到更加符合目标分布的样本,从而最小化重采样后的粒子枯竭问题。此外,这里采用Kullback-Leibler距离(KLD)指标对不同粒子滤波算法的性能进行评估。仿真结果表明,该三维弹道目标跟踪算法粒子群与参考粒子群(近似真实目标概率分布的粒子群)之间的KLD比标准粒子滤波与参考粒子群之间的KLD更小,因此,能获得比标准粒子滤波算法更好的跟踪效果。 A particle filter algorithm for three dimensional(3D)ballistic target tracking is given.Based on the standard particle filter(sampling/importance resampling,SIR),this algorithm uses an optimized importance function which is based on Bayes principle and local linear technique to combat particle degeneracy.Meanwhile,it incorporates a Metropolis-Hastings(MH)move step which is possible to gain the more suitable samples to reduce particle impoverishment.Furthermore,the Kullback-Leibler divergence(KLD)indexes are used to evaluate the performance of different particle filters.Simulation results demonstrate that the KLD's estimator between the particle clouds of the particle filter algorithm for 3Dballistic target tracking and the reference particle clouds(optimized truth)is smaller than the SIR.Therefore,the algorithm can be better than the standard particle(SIR)in tracking.
出处 《雷达科学与技术》 北大核心 2015年第1期44-50,共7页 Radar Science and Technology
基金 国家自然科学基金(No.61101171) 中央高校基本业务费资助项目(No.ZYGX2013J021)
关键词 弹道目标跟踪 粒子滤波算法 Kullback-Leibler距离 性能评估 ballistic target tracking particle filter Kullback-Leibler divergence performance evaluation
  • 相关文献

参考文献7

  • 1ROBERT C P, CASSELLA G. Monte Carlo Statisti- cal Methods[M]. New York:Springer-Verlag, 1999: 235-262.
  • 2BRUNO M G S, PAVLOV A. Improved Particle Fil- ters for Ballistic Target Tracking[C]//2004 IEEE In- ternational Conference on Acoustics, Speech, and Sig- nal Processing, IS. 1. :[-s. n. ], 2004 17-21.
  • 3BRUNO M G S, PAVLOV A. Improved Sequential Monte Carlo Filtering for Ballistic Target Tracking [J]. IEEE Trans on Aerospace and Electronic Sys- tems, 2005 ,41(3) :1103-1108.
  • 4马利兵,林都.基于MATLAB的外弹道模型仿真研究[J].中北大学学报(自然科学版),2006,27(5):412-415. 被引量:28
  • 5CHOU R, BOERS Y, PODT M, et al. Performance Evaluation for Particle Filters[C] ff 2011 Proceedings of the 14th International Conference Information Fu- sion, Chicago, IL.. IEEE, 2011 .. 1-7.
  • 6WANG Q, KULKARNI S R, VERDU S. Divergence Estimation for Multidimensional Densites via k-Nea- rest-Neighbor Distances[J]. IEEE Trans on Informa- tion Theory, 2009, 55(5):2392-2405.
  • 7石一鸣,陈凤友,姜来春.非高斯杂波下雷达目标跟踪算法改进研究[J].雷达科学与技术,2012,10(4):391-395. 被引量:1

二级参考文献12

  • 1查代奉,邱天爽.一种基于分数低阶协方差矩阵的波束形成新方法[J].通信学报,2005,26(7):16-20. 被引量:7
  • 2张安清,邱天爽,章新华.α稳定分布的水声信号处理新方法[J].电子与信息学报,2005,27(8):1201-1204. 被引量:13
  • 3Daeipour E, Bar-Shalom Y. An Interacting Multiple Model Approach for Target Tracking with Glint Noise [C] // Record of the IEEE National Radar Conference, Atlanta, GA:IEEE, 1994:150-154.
  • 4Georgiou P G. Alpha-Stable Modeling of Noise and Robust Time-Delay Estimation in the Presence of Implusive Noise[J]. IEEE Trans on Multimedia, 1999, 1(3):291-301.
  • 5Shao M, Nikias C L. Signal Processing with Fractional Lower Order Moments:Stable Processes and Their Applieations[J]. Proceedings of the IEEE, 1993, 87 (1) :986-1010.
  • 6Chambers J A, Tanrikuiu O, Constantinides A G. Least Mean Mixed-Norm Adaptive Filtering[J]. Electronics Letters, 1994, 30(19) : 1574-1575.
  • 7Bodenschatz J S, Nikas C L. Symmetric Alpha-Stable Filter Theory[J]. IEEE Trans on Signal Processing, 1997, 45(9) :2301-2306.
  • 8Ma X Y. Robust Signal Processing in Impulsive Noise with Stable Distributions:Estimation, Identification and Equalization [D]. USA: University of Southern California, 1996.
  • 9朱志宇.基于UKF的闪烁噪声机动目标跟踪[J].计算机仿真,2007,24(11):120-123. 被引量:5
  • 10曾浩,郭文卓,刘宝泉.复合高斯海杂波环境下雷达虚警概率分析[J].雷达科学与技术,2011,9(1):44-47. 被引量:4

共引文献27

同被引文献8

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部