期刊文献+

基于小波核LS-SVM的车牌字符识别算法研究 被引量:10

Research on Plate Character Recognition Based on Wavelet Kernel LS-SVM
下载PDF
导出
摘要 字符识别是整个车牌识别系统至关重要的一步,决定着系统最终的识别率。文中不同于传统的SVM识别方法,而是采用了LS-SVM为基础的新颖方法,从而简化了SVM优化问题的求解。鉴于车牌字符的独特性,将小波函数作为LS-SVM的核函数。结合字符和字符识别的特征,分析小波核函数的可行性,最后通过实验结果横向、纵向对比,得出小波核函数的优势。实验结果表明,相比于传统的神经网络和模板匹配等字符识别算法,提高了车牌系统的识别率;与传统SVM识别算法相比,亦减少了车牌的识别时间。 Plate character recognition is a most important step of the whole plate recognition system,which determines the final system recognition rate. The method LS-SVM used in this paper is different from the traditional SVM,which simplifies the SVM optimization.In view of the specialty of plate character,take the wavelet function as the kernel function for LS-SVM. Combined with the feature of character and character recognition,analyze the feasibility of this wavelet kernel function,finally through the experimental results of vertical and horizontal comparison,the advantage of wavelet kernel function is obtained. Compared with other algorithms such as Neural Network and Template M atching,this method has improved the recognition rate while the recognition time is reduced.
出处 《计算机技术与发展》 2015年第3期86-90,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(61106021) 南京邮电大学校自然科学研究基金(NY211059)
关键词 字符识别 LS-SVM 小波核函数 多级分类器 character recognition LS-SVM wavelet kernel function multi-classifier
  • 相关文献

参考文献4

二级参考文献32

  • 1杨晓敏,吴炜,黎涛,何小海.基于Gabor变换和支持向量机的车牌字符识别算法[J].四川大学学报(工程科学版),2005,37(5):130-134. 被引量:17
  • 2吴炜,杨晓敏,刘大宇,何小海.一种基于模糊模板匹配的车牌汉字识别方法[J].微型机与应用,2005,24(11):57-59. 被引量:13
  • 3[1]Vapnik V.An Overview of Statistical Learning Theory.IEEE Trans. Neural Networks,1999,10(5):988-999
  • 4[2]Pontil M,Verri A.Support Vector Machines for 3D Object Recognition. IEEE Tran. Pattern Analysis and Machine Intelligence,1998,20(6):637
  • 5[3]Burges C J C.A Tutorial on Support Vector Machines for Pattern Recognition.Data Mining and Knowledge Discovery,1998,2:121-167
  • 6[4]Platt J C.Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines.Microsoft Research Tech. Report MSR-TR-98-14,1998-04-21
  • 7Vapnik V N. The Nature of Statistical Learning Theory [ M ].New York: Springer, 1995. 1~175.
  • 8Burges C J. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2): 955 ~974.
  • 9Bernhard S, Sung K K. Comparing support vector machines with Gaussian kernels to radical basis function classifiers [ J]. IEEETransactions on Signal Processing, 1997, 45 ( 11 ): 2758 ~2765.
  • 10Osuna E, Ereund R, Girosi F. Training support vector machines:an application to face detection [ A]. Proceedings of the 1997IEEE Computer Society Conference on Computer Vision and Pattern Recognition [C]. Los Alamitos, CA, USA: IEEE, 1997.130 ~ 136.

共引文献80

同被引文献74

引证文献10

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部