期刊文献+

催化化学气相沉积法(CCVD)制备多孔LiFePO_4/C复合材料的研究(英文) 被引量:3

Synthesis of Porous LiFePO_4/C Composite Materials by CCVD Method
原文传递
导出
摘要 以C2H2为碳源,Fe为催化剂,纳米FePO4为原料,采用催化化学气相沉积法(CCVD)合成多孔LiFePO4/C正极材料。经BET、SEM、CHON有机元素分析仪、XRD等手段对复合材料进行结构分析表征。结果表明,该复合材料具有连续贯通的三维导电网络结构,大的比表面积以及多重孔隙的类球形结构,含碳量为4.42%(质量分数),低于传统碳热还原法所制备的材料。电化学测试表明,该材料在0.1、1、5、10 C倍率下,放电比容量分别为147,141,126,110 m Ah·g-1,高倍率充放电性能大大提高,另外,该材料1 C循环80次后,放电比容量基本没有降低,显示了良好的循环稳定性能。 Porous LiFePO4/C composite was in-situ prepared by a catalytic chemical vapor deposition(CCVD) method in a fluidized bed reactor, using ethyne as carbon source, ferrum as catalyst, and nano-FePO4 as reactant. The composite was analyzed and characterized by BET, SEM, CHON organic element analyzer and XRD. Results show that the composite possesses a continuous three-dimensional conductive network, high specific surface area and hierarchical multimodal porous subsphere structure. Its carbon content is 4.42 wt%, which is less than that by the conventional method. The porous LiFePO4/C composite shows the discharge capacities of 147, 141, 126 and 110 m Ah·g^-1 at rates of 0.1, 1.0, 5.0 and 10 C, respectively, gaining better high rate charge-discharge performance. In addition, the discharge capacity of porous LiFePO4/C composite rarely loses at 1 C rate after 80 cycles, which exhibits better cycling performance than that of traditional carbon coated LiFePO4.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第2期307-311,共5页 Rare Metal Materials and Engineering
基金 Shandong Young Scientists Award Fund(BS2012NJ010)
关键词 催化化学气相沉积 LIFEPO4 掺碳 流化床 catalytic chemical vapor deposition LiFePO_4 carbon dopted fluidized bed
  • 相关文献

参考文献1

二级参考文献21

  • 1Padhi A K, Najundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144:1188-1194.
  • 2Padhi A K, Najundaswamy K S, Masquelier C, et al, Effect of struc- ture on the Fe^3+/Fe^2+ redox couple in iron phosphates. J Electrochem Soc, 1997, 144:1609-1613.
  • 3Padhi A K, Najundaswamy K S, Masquelier C, et al. Mapping of tran- sition metal redox energies in phosphates with NASICON structure by lithium intercalation. J Electrochem Soc, 1997, 144:2581-2586.
  • 4Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater, 2002, 1: 123-128.
  • 5Molenda J, Stoklosa A, Bak T. Modifications in the electronic struc- ture of cobalt bronze LixCoO2 and the resulting electrochemical properties. Solid State Ionics, 1989, 36:53-58.
  • 6Guan J, Liu M. Transport properties of LiMn2O4 electrode materials for lithium-ion batteries. Solid State Ionics 1998, 110:21-28.
  • 7Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett, 2001, 4:A170-A172.
  • 8Ravet N, Goodenough J B, Besner S, et al. Improved iron based cathode material. In: 196th Meeting Abstract of the Electrochemical Society, 1999, Oct 17-22, Hawaii. Meeting Abstracts, 1999. 127.
  • 9Belharouak I, Johnson C, Amine K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochem Commun, 2005, 7:983-988.
  • 10Croce F, Epifanio A D, Hassoun J, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electro- chem Solid-State Lett, 2002, 5:A47-A50.

共引文献3

同被引文献38

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部