摘要
针对未知互耦条件下的波达方向(DOA)估计问题,提出了一种未知互耦条件下基于实值稀疏表示的加权子空间DOA估计算法。新算法利用一个特定的酉变换矩阵,将一个复杂的复值优化问题转化为一个实值优化问题,从而有效地将原问题的计算复杂度减少4倍以上。此外,为了进一步提高稀疏表示的估计算法估计精度,在原有l1范数优化模型基础上引入一个能使得DOA估计方差取得最小值的最优子空间加权矩阵。仿真实验表明,在低信噪比情况下,新算法能进一步提高稀疏表示的估计算法抗噪能力,获得更好的估计精度。
The paper presents a real-valued sparse representation method for DOA estimation in the presence of unknown mutual coupling. Utilizing a certain unitary transformation and taking advantage of the special structure of mutual coupling matrix ( MCM ) for uniform linear arrays (ULAs) , we are able to convert complex-valued manifold matrices of ULAs with unknown mutual coupling into real ones. Due to this transformation, the computational complexity can be decreased by a factor of at least four. Moreover, the proposed method is expected to have a better noise suppression, as it exploits an additional optimal weighting matrix. Thus, the proposed method outperforms the original one, especially when signal-to- noise ratio (SNR) is low. Simulation results verify the efficiency of the proposed method.
出处
《兵工学报》
EI
CAS
CSCD
北大核心
2015年第2期294-298,共5页
Acta Armamentarii
基金
国家自然科学基金项目(61102054)
东南大学移动通信国家重点实验室开放研究基金项目(2013D08)
关键词
信息处理技术
波达方向估计
稀疏表示
互耦
均匀线阵
information processing technology
direction of arrival estimation
sparse representation
mutual coupling
uniform linear array