期刊文献+

改进K均值与模糊置信度的脑部MRI分割 被引量:3

Brain MRI image segmentation based on improved K-means clustering and fuzzy confidence method
下载PDF
导出
摘要 针对脑部磁共振图像(MRI)的灰度分布特性,提出一种结合灰度距离加权K-means聚类与模糊置信度的混合医学图像分割方法。采用改进的灰度加权K-means聚类方法对MRI图像进行训练分类得到粗略分类结果,运用基于支持向量数据域描述(SVDD)的模糊置信度方法对每个类精细分割,得到脑部各组织的输出图像。该算法分割时逐渐增大目标模糊置信度门限,通过对模糊置信度的动态优化来逼近最佳分割结果。在脑部MRI图像上的实验结果表明,该方法在处理图像灰度分布不均匀、存在孤立点、细化轮廓等问题时具有较高的准确度和鲁棒性。 Aiming at grayscale distribution characteristics of the brain MRI image,a medical image segmentation method combining intensity distance weighted K-means clustering and fuzzy confidence method was proposed.Firstly,an MRI image was classified with the improved gray weighted K-means clustering method to obtain a rough segmentation result.Then,the fuzzy confidence method based on support vector domain description(SVDD)was used to further refine each class.Finally,the output image was obtained according to the segmentation of brain image organs.The segmentation algorithm gradually increased target fuzzy confidence threshold,based on the dynamic optimization of fuzzy confidence degree,to achieve optimal segmentation results.Experimental results on MRI brain images show the robustness and accuracy of the method when dealing with the uneven gray distribution of target,isolated points and thin contours.
出处 《计算机工程与设计》 北大核心 2015年第3期710-715,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(31201121) 湖北省教育厅重点基金项目(D20131101) 湖北省重点实验室基金项目(znss2013A006)
关键词 图像分割 K-MEANS聚类 支持向量数据域描述 模糊置信度 磁共振图像 image segmentation K-means clustering SVDD fuzzy confidence MRI
  • 相关文献

参考文献14

二级参考文献58

  • 1JUSZCZAK P, ADAMS N M, HAND D J, et al. Off-the-peg and bespoke classifiers for fraud detection[ J]. Computation Statistics and Data Analysis, 2008,52 (9) :4521-4532.
  • 2TAX D M J. Support vector data description [ J]. Machine Learning, 2004,54(1):45-46.
  • 3LEE Y J, MANGASARIAN O L. A smooth support vector machine for classification [ J ]. Computational Optimization and Applications, 2001,20( 1 ) :5-22.
  • 4KEERTHI S S, GILBERT E G. Convergence of a generalized SMO algorithm for SVM classifier design[ J]. Machine Learning, 2002, 46( 1 ) :351-360.
  • 5COLLOBERT R, BENGIO S, BENGIO Y. A parallel mixture of SVMs for very large scale problems [ J ]. Neural Computation, 2002,14(5) :143-160.
  • 6LEE K Y, KIM D W, LEE D, et al. Improving support vector data description using local density degree [ J ]. Pattern Recognition, 2005,38(10) :1768-1771.
  • 7GUO S M, CHEN L C, TSAI J S H. A boundary method for outlier detection based on support vector domain description [ J ]. Pattern Recognition, 2009,42( 1 ) :77-83.
  • 8NEWMAN D J, HETTICH S, BLAKE C L, et al. UCI repository of machine learning databases [ EB/OL ]. ( 1998 ). http://www.ics.uci.edu/-mlearn/MLRepository.html.
  • 9Wells W, Grimson W, Kikins R. Adaptive segmentation of MRI data [ J ]. IEEE Transactions on Medical Imaging, 1996,15 (4) :429 - 442.
  • 10Haas Christine, Ermert Helmut, Holt Stephan. Segmentation of 3D intravascular ultrasonic images based on a random field model[ J]. Ultrasound in Medicine & Biology ,2000,26 ( 2 ) :297 - 306.

共引文献63

同被引文献27

  • 1陈允杰,王顺凤,王利,汤杨,韦志辉,王平安,夏德深.基于各向异性Gibbs随机场与高斯混合模型的脑MR图像分割算法[J].计算机辅助设计与图形学学报,2007,19(12):1558-1563. 被引量:7
  • 2陈允杰,张建伟,王利,王平安,夏德深.基于改进的Mean Shift算法虚拟人脑图像分割[J].计算机辅助设计与图形学学报,2008,20(1):55-60. 被引量:10
  • 3Zhang X J, Wu X L. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation[J]. IEEE Transactions on Image Processing, 2008, 17(6): 887-896. [DOI: 10.1109/TIP.2008.924279].
  • 4Chavez R H, Ponomaryov V. Super resolution image generation using wavelet domain interpolation with edge extraction via a sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1777-1781. [DOI: 10.1109/LGRS.2014.2308905].
  • 5Tai Y W, Liu S C, Brown M, et al. Super resolution using edge prior and single image detail synthesis[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010: 2400-2407. [DOI: 10.1109/CVPR.2010.5539933].
  • 6Zhang K B, Gao X B, Tao D C, et al. Single image super-resolution with non-local means and steering kernel regression[J]. IEEE Transactions on Image Processing, 2012, 21(11): 4544-4556. [DOI: 10.1109/TIP.2012.2208977].
  • 7Zeyde R, Elad M, Protter M. On Single Image Scale-up Using Sparse-Representations[M]. Berlin: Springer, 2012: 711-730. [DOI: 10.1007/978-3-642-27413-8_47].
  • 8Dong W S, Zhang D, Shi G M, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization[J]. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857. [DOI: 10.1109/TIP.2011.2108306].
  • 9Nazzal M, Ozkaramanli H. Wavelet domain dictionary learning-based single image super-resolution[J]. Signal, Image and Video Processing, 2014: 1-11. [DOI: 10.1007/s11760-013-0602-7].
  • 10Xu J, Chang Z G, Fan J L. Image super-resolution by mid-frequency sparse representation and total variation regularization[J]. Journal of Electronic Imaging, 2015, 24(1): 013039-013039. [DOI: 10.1117/1.JEI.24.1.013039].

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部