期刊文献+

正线性函数在深度神经网络中的研究 被引量:3

Research on positive linear function in deep neural networks
下载PDF
导出
摘要 针对深度神经网络中常用的激活函数具有非线性和计算复杂度高的特点,提出使用正线性函数代替常用非线性函数作为深度神经网络的激活函数。基于正线性激活函数建立的深度神经网络模型计算复杂度低,能得到稀疏表示,与人类大脑信息感知具有一致性。通过图像分类任务验证了正线性激活函数在深度神经网络中应用的有效性。 Aiming at the problems of non-linearity and high computational complexity of the common activation functions in the deep neural networks,the method using the positive linear function to replace the common non-linear activation function in deep neural networks was presented.Positive linear function not only has low computational complexity,but also implements the sparse representation of information like human brain.The image classification task was used to verify the effectiveness of the positive linear function in deep neural networks.
作者 冯畅
出处 《计算机工程与设计》 北大核心 2015年第3期759-762,801,共5页 Computer Engineering and Design
关键词 特征提取 深度神经网络 激活函数 正线性函数 手写体数字识别 feature extraction deep neural networks activation function positive linear function handwriting recognition
  • 相关文献

参考文献10

  • 1Ebert T, Banfer O, Nelles O. Multilayer perceptron network with modified sigmoid activation functions [G]. LNCS 6319: Artificial Intelligence and Computational Intelligence. Berlin: Springer Berlin Heidelberg, 2010: 414-421.
  • 2Karlik B, Olgae AV. Performance analysis of various activa- tion functions in generalized MLP architectures of neural net- works [J]. International Journal of Artificial Intelligence and Expert Systems, 2010, 1 (4): 111-122.
  • 3Glorot X, Bordes A, Bengio Y. Domain adaptation for large-scalesentiment classification: A deep learning approach [C] //Proceedings of the 28th International Conference on Machine Learning, 2011.
  • 4Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks [C] //Proceedings of the International Conference on Artificial Intelligence and Statistics, 2010.
  • 5Graves A, Mohamed AR, Hinton G. Speech recognition with deep recurrent neural networks [C] //IEEE International Con- ference on Acoustics, Speech and Signal Processing, 2013.
  • 6Pradhan 13, Lee S. Regional landslide susceptibility analysis using back-propagation neural network model at Cameron High- land, Malaysia [J]. Landslides, 2010, 7 (1): 13-30.
  • 7Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep net- work with a local denoising criterion [J]. The Journal of Ma- chine LearningResearch, 2010, 11; 3371-3408.
  • 8练秋生,陈书贞.基于混合基稀疏图像表示的压缩传感图像重构[J].自动化学报,2010,36(3):385-391. 被引量:28
  • 9Bouchard G. Efficient bounds for the softmax function and ap- plcations to approximate inference in hybrid models [C] // Proceedings of the NIPS Workshop for Approximate Bayesian Inference in Continuous/Hybrid Systems, 2007.
  • 10DENG L. The MNIST database of handwritten digit images for machine learning research [J]. IEEE Signal Processing Magazine, 2012, 29 (6): 141-142.

二级参考文献17

  • 1练秋生,孔令富.圆对称轮廓波变换的构造[J].计算机学报,2006,29(4):652-657. 被引量:12
  • 2Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 3Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 4Candes E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
  • 5Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 6Candcs E J, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3): 969-985.
  • 7Tsaig Y, Donoho D L. Extensions of compressed sensing. Signal Processing, 2006, 86(3): 549-571.
  • 8Ma J W. Compressed sensing by inverse scale space and curvelet thresholding. Applied Mathematics and Computation, 2008, 206(2): 980-988.
  • 9Starck J L, Elad M, Donoho D L. Image decomposition via the combination of sparse representations and a variational approach. IEEE Transactions on Image Processing, 2005, 14(10): 1570-1582.
  • 10Meyer Y. Osillating Patterns in Image Processing and Nonlinear Evolution Equation. Boston: American Mathematical Society, 2002.

共引文献27

同被引文献12

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部