期刊文献+

磨粒预钎焊烧结金刚石雕刻磨头的性能研究 被引量:1

Performance study on diamond carving grinding head with pre-brazed abrasives
下载PDF
导出
摘要 针对烧结金刚石雕刻磨头在加工过程中胎体容易产生裂纹甚至断裂等问题,采用预钎焊金刚石磨粒制作了金刚石雕刻磨头。利用有限元仿真方法分析不同金刚石磨粒界面结构对节块的力学性能的影响;通过三点抗弯实验测试节块的强度;并通过加工性能实验测试3种雕刻磨头的性能。结果表明:仿真实验中胎体上的应力能较多地转移到预钎焊磨粒上,从而降低了胎体自身的应力,提高了胎体的力学性能;预钎焊磨粒节块的抗弯强度也高于常规金刚石节块,在金刚石体积浓度为100%时,强度提高32.3%;预钎焊金刚石雕刻磨头的加工性能优于常规金刚石雕刻磨头。 The matrix of sintered diamond grinding head were easily get cracked or even broken during machining process. To solve this problem, pre-brazed diamond grits method was used to make diamond grinding head. Finite element analysis was used to test the effects of diamond surface structure on mechanical performance of the bulk. The strength of bulks were tested through three-point bending tests. The performance of three kinds of grinding head were tested through processing performance experiments. The simulation indicated that stress on matrix would transfer to pre-brazed grits, so the self-stress of matrix decreased which improved the mechanical performance of matrix. The bending strength of pre-hrazed grits bulks was higher than that of normal diamond bulk. The strength has increased 32.3 % with diamond volume concentration of 100%. As the result of this experiment, pre-brazed diamond grinding head processing performance was better than that of normal diamond grinding head.
出处 《金刚石与磨料磨具工程》 CAS 2015年第1期6-10,共5页 Diamond & Abrasives Engineering
基金 江苏省产学研前瞻性联合研究项目(项目编号:BY2013003-15 BY2011102 BY2012010 BY2012013 BY2012015 BY2013003-04 BY2013003-14)
关键词 预钎焊 力学性能 复合节块 抗弯强度 金刚石雕刻磨头 pre-brazed mechanical properties composite bulk bending strength diamondgrinding head
  • 相关文献

参考文献2

二级参考文献42

  • 1Yakel H L. Acta Cryst B [J], 1987,43: 230.
  • 2Patil S K R,Khare S Y, Tuttle B R et al. Phys Rev B[J], 2006, 73: 104 118.
  • 3Wu Zhijian, Zhao Erjuan, Xiang Hongping et al. Phys Rev B [J], 2007, 76: 054 115.
  • 4Zhou W, Liu L, Li B et al. Comput Mater Sci[J],2009,46: 921.
  • 5Nikolussi M, Shang S L, Gressmann T et al. Scripta Mater [J], 2008, 59: 814.
  • 6Jang J H, Kim I G, Bhadeshia H K D H. Comput Mater Sci [J], 2009, 44: 1319.
  • 7Yang Y, Lu H, Yu C et al. J Alloy Compd[J], 2009, 485: 542.
  • 8Gilman J J, Roberts BW. J Appl Phys[J], 1961,32: 1405.
  • 9Price D L, Cooper B R. Phys Rev B [J], 1989,39: 4945.
  • 10Liu Z L, Chen X R, Wang Y L. Physica B[J], 2006, 381: 139.

共引文献23

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部