期刊文献+

电化学法制备部分还原氧化石墨烯薄膜及其光电性能 被引量:4

Photoelectric Properties of Graphene Oxide Film Prepared with the Electrochemical Method Using Varying Levels of Reduction
下载PDF
导出
摘要 提供了一种快速制备氧化石墨烯(GO)薄膜的方法,并通过调节GO薄膜的含氧量来调控其能级结构.采用阳极电泳及阴极电化学还原联用的方法在F掺杂Sn O2(FTO)导电玻璃上制备出不同层数及含氧量的GO薄膜,并通过扫描电镜(SEM)、X射线衍射(XRD)、紫外可见(UV-Vis)光谱、X射线光电子能谱(XPS)、拉曼光谱及电化学分析对样品进行表征.用20-350 s不同时间电泳沉积得到层数约为77-570层的GO薄膜.经过不同时间阴极还原的GO薄膜的禁带宽度为1.0-2.7 e V,其导带位置及费米能级也随之改变.GO作为p型半导体,与FTO导电膜之间会形成p-n结,在光强为100 m W·cm-2的模拟太阳光照射下,电泳300 s且电化学还原120 s时GO薄膜阳极光电流密度达到5.25×10-8A·cm-2. This article details a quick and simple method to prepare graphene oxide(GO) film and tune its energy level by adjusting the oxygen content. GO films with different layers were fabricated on fluorine-doped Sn O2(FTO) conductive glass using the anodic electrophoretic deposition process. The degree of oxidation was regulated by cathodic electrochemical reduction. The as-prepared GO films were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), ultraviolet-visible absorption(UV-Vis) spectroscopy, X-ray photoelectron spectra(XPS), Raman spectroscopy and electrochemical analysis. The number of GO layers was varied between 77 and 570 by controlling the electrophoretic deposition time(from 20 to 350 s). Changing the degree of oxidation caused the optical gap of GO to vary between 1.0 and 2.7 e V, and also impacted the edge of the conduction band and the Fermi energy for the sample. As a p-type semiconductor, a p-n junction can be formed between reduced GO and FTO. Under simulated sunlight irradiance of 100 m W·cm^-2, the GO film with a deposition time of 300 s and reduction time of 120 s produced the highest photocurrent density of5.25×10^-8A·cm^-2.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2015年第3期457-466,共10页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(51172162)资助项目~~
关键词 氧化石墨烯 电化学 薄膜 能级 光电流密度 Graphene oxide Electrochemistry Film Energy level Photocurrent density
  • 相关文献

参考文献3

二级参考文献68

  • 1傅玲,刘洪波,邹艳红,李波.Hummers法制备氧化石墨时影响氧化程度的工艺因素研究[J].炭素,2005(4):10-14. 被引量:111
  • 2邹旭 范妞 庄敏阳 彭景 高丽华 王科志.化学学报,2010,68:2250-2250.
  • 3Matsui, J.; Abe, K.; Mitsuishi, M. Langmuir 2009, 25, 11061.
  • 4Acik, M.; Mattevi, C.; Gong, C. ACS Nano 2010, 4, 5861.
  • 5Chang, L. M.; Wu, S.; Chen, S. N.; Li, X. J. Mater. Sci. 2011, 46, 2024.
  • 6Zhang, Y. P.; Pan, C. X. J. Mater. Sci. 2011, 46, 2622.
  • 7Yao, H. B.; Wu, L. H.; Cui, C. H. J. Mater. Chem. 2010, 20, 5190.
  • 8Cooper, T. M.; Campbell, A. L.; Crane, R. L. Langmuir 1995, 11, 2713.
  • 9Paredes, J. I.; Villar-Rodil, S.; Martinez-Alonso, A. Langmuir 2008, 24, 10560.
  • 10Maria, A.; Cyr, P.; Klem, E.; Levina, L.; Sargent, E. H. Appl. Phys. Lett. 2005, 87, 213112.

共引文献24

同被引文献3

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部