4M. G. Frei, I. Osorio. Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals [J]. Proceedings of the Royal Society, A, 2007, 463:321-342.
5Kurtis Gurley, Ahsan Kareem. Application of wavelet trans- form in earthquake, wind and ocean [J]. Engineering Struc- tures, 1999, 21(3): 149-167.
6W. J. Wang. Application of orthogonal wavelets to early damage detection [J]. Mechanical Systems and Signal Pro- cessing, 1995, 9(5): 497-507.
7N. E. Huang,. Z. Shen, S. R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C. Tung and H. H. Liu. The empirical mode de- composition method and the Hilbert spectrum for non-sta- tionary time series analysis. Proc. Roy. Soc. London, 1998, (454A): 903-995.
8N. E. Huang, Z. Shen and R. S. Long. A new view of non- linear water waves--the Hilbert spectrum. Ann. Rew. Fluid Mesh, 1999, (31): 417-457.
9Z. H. Wu and N. E. Huang, "A study of the characteristics of white noise using the empirical mode decomposition meth- od," in Proceedings of the Royal Society of London, 2004, 460(2046): 1597-1611.
5Jing Lin, Feature extraction of machine sound using wavelet and its application in fault diagnosis [ J ] , NDT & E International, Volume 34, Issue 1, January 2001, Pages 25 - 30.
6Javier Sanz, Ricardo Perera, Consuelo Huerta, Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms [ J ], Journal of Sound and Vibration, Volume 302, Issues 4 -5,22 May 2007, Pages 981 - 999.