期刊文献+

Cs/B催化剂载体对甲苯甲醇侧链烷基化性能的影响 被引量:5

The Effect of Different Carrier Supported Cs and B Catalysts on Catalytic Performances for Side-chain Alkylation of Toluene and Methanol
下载PDF
导出
摘要 以间苯二酚、甲醛为碳源合成的有序介孔碳(OMC)为载体,采用浸渍法制备了含Cs和B的负载型催化剂(CsB/OMC)。对其与不同载体改性催化剂的甲醇甲苯侧链烷基化性能进行了对比研究。采用XRD、CO2-TPD、NH3-TPD、氮吸附-脱附、TEM等手段对催化剂进行了表征。实验结果发现,不同载体催化剂的甲苯甲醇侧链烷基化活性顺序由大到小依次为:CsB/OMC,CsB/MCM-41,CsB/AC,CsB/ZSM-5.其中,CsB/OMC活性最高,乙苯和苯乙烯的总收率可达到34.9%;CsB/MCM-41中苯乙烯的选择性较高。研究表明,弱碱中心有利于提高侧链烷基化活性,弱酸中心和中强碱中心的协同作用有利于提高苯乙烯的选择性。 Ordered mesoporous carbon supported Cs and B catalysts (CsB/OMC) were pre-pared by impregnation of Cs and B components on OMC carrier, which was synthesized by a two- step method of soft template using resorcinol and formaldehyde as carbon precursor,triblock co- polymer Pluronic F127 as template. The catalytic performances were investigated and compared for side chain alkylation of toluene with methanol over the different carriers modified catalysts. The catalysts were characterized by X-ray diffraction (XRD),nitrogen adsorption-desorption iso-therm, transmission electron microscopy (TEM), temperature programmed desorption of CO2(CO2-TPD) and temperature programmed desorption of NHa (NHa-TPD). The catalytic performances and characterization results of different carriers modified catalysts were compared. It reveals that catalytic activity of side chain alkylation decreases in the order CsB/OMC, CsB/MCM-41, CsB/AC,CsB/ZSM-5, and the yield of ethylbenzene and styrene (Ysty+ЕВ) reaches 34.9% over the CsB/OMC. The weak base sites can help improve the side chain alkylation catalytic activity, and the high styrene selectivity requires coordination of appropriate weak acid and weak-medium base sites.
出处 《太原理工大学学报》 CAS 北大核心 2015年第1期1-5,10,共6页 Journal of Taiyuan University of Technology
基金 国家自然科学基金重点资助项目:合成气高效转化集成工艺及其关键科学与技术问题的研究(21336006) 太原理工大学青年基金(2013Z023) 太原理工大学引进人才基金(tyutrc-201338a tyutrc-201359a)
关键词 侧链烷基化 甲苯 甲醇 有序介孔碳 载体 side chain alkylation toluene methanol ordered mesoporous carbon catalyst carriers
  • 相关文献

参考文献3

二级参考文献52

  • 1黄丛亮, 冯妍卉, 张欣欣, 王戈, 李静 2011 物理学报 60 114401.
  • 2Kopyscinski J, Schildhauer T J, Biollaz S M A. Production of synthetic natural gas(SNG) from coal and dry biomass - a technology review from 1950 to 2009[J]. Fuel, 2010, 89:1763-1783.
  • 3Pan Zhiyong, Dong Minghui, Meng Xiangkun, Zhang Xiaoxing, Mu Xuhong, Zong Baoning. Integration of magnetically stabilized bed and amorphous nickel alloy catalyst for CO methanation[J]. Chemical Engineering Science, 2007, 62:2712-2717.
  • 4Hwang S, Lee J, Hong U G, Seo J G, Jung J C, Koh D J, Lim H, Byun C, Song I K. Methane production from carbon monoxide and hydrogen over nickel-alumina xerogel catalyst: effect of nickel content[J]. Journal of Industrial and Engineering Chemistry, 2011, 17: 154-157.
  • 5Xavier K O, Sreekala R, Rashid K K A, Yusuff K K M, Sen B. Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation[J]. Catalysis Today, 1999, 49:17-21.
  • 6Derekaya F B, Yasar G. The CO methanation over NaY-zeolite supported Ni/Co3O4, Ni/ZrO2, Co3O4/ZrO2 and Ni/Co3O4/ZrO2 catalysts[J]. Catalysis Communications, 2011, 13: 73-77.
  • 7Ocampo F, Louis B, Roger A C. Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method[J]. Applied Catalysis A: General, 2009, 369: 90-96.
  • 8Sabatier P, Senderens J B. New synthesis of methane[J]. Académie des Sciences, 1902, 134: 514-516.
  • 9Duan Xuezhi, Qian Gang, Zhou Xinggui, Sui Zhijun, Chen De, Yuan Weikang. Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition[J]. Applied Catalysis B: Environmental, 2011, 101:189-196.
  • 10Ballarini A D, De Miguel S R, Jablonsiki E L, Scelza O A, Castro A A. Reforming of CH4 with CO2 on Pt-supported catalysts effect of the support on the catalytic behavior[J]. Catalysis Today, 2005, 107-108: 481-486.

共引文献42

同被引文献51

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部