期刊文献+

基于二维稀疏表示的人脸超分辨率重构算法 被引量:1

Face Super-Resolution Reconstruction Algorithm Based on Two-Dimensional Sparse Representation
下载PDF
导出
摘要 在分析人脸超分辨率算法和二维稀疏表示的基础上,提出基于二维稀疏表示的人脸超分辨率重构算法。与一维稀疏表示中将图像块转换为列向量不同,本文考虑到二维图像列与列之间的近邻关系,对图像块进行二维稀疏表示;在字典训练中,对每组图像块的每一列训练高、低分辨率字典,提出二维K-SVD算法对字典进行训练,减少字典训练消耗的时间,同时能够改善超分辨率人脸的质量。采用中科院CAS-PEAL共享人脸图像数据库进行仿真实验,实验结果从主、客观质量均验证了本文算法的有效性及先进性。 In this paper, by analyzing the face super-resolution algorithms and two-dimensional sparse representation, a novel algorithm called the face super-resolution algorithms based on two- dimensional sparse representation is proposed. Unlike the traditional sparse representation converting image blocks to column vector, the algorithm takes two-dimensional sparse representation with blocks under the constraints that columns in each block own the neighbor-relations. A novel K-SVD algorithm called two-dimensional K-SVD algorithm is proposed to train sparse dictionaries by training high and low resolution dictionaries for each columns of blocks in each set. The two- dimensional K-SVD algorithm can not only reduce the time of the dictionary training effectively, but also improve the quality of the reconstruction of super-resolution images. Experiment results on CAS-PEAL face database show that the algorithm is effective on subjective and objective qualities.
出处 《太原理工大学学报》 CAS 北大核心 2015年第2期183-187,共5页 Journal of Taiyuan University of Technology
基金 山西省自然科学基金(2012011011-2)
关键词 人脸超分辨率 局部分块 二维稀疏表示 二维K-SVD face super-resolution position-block two-dimensional sparse representation two- dimensional K-SVD
  • 相关文献

参考文献2

二级参考文献27

  • 1沈焕锋,李平湘,张良培.一种自适应正则MAP超分辨率重建方法[J].武汉大学学报(信息科学版),2006,31(11):949-952. 被引量:21
  • 2张艳,王涛,徐青,孙雷.基于HMRF先验模型的HBE卫星遥感图像超分辨率重建[J].武汉大学学报(信息科学版),2007,32(7):589-592. 被引量:5
  • 3Baker S, Kanade T. Limits on super-resolution and how to break them[J]. IEEE Trans. on Pattern Analysis and Machine Intelli- gence, 2002,24(9) : 1167-1183.
  • 4Wang Xiao-gang, Tang Xiao-ou. Hallucinating face by eigen- transform[J]. IEEE Trans. on Systems, Man and Cybernetics Part C: Applications and Reviess, 2005,35 (3) : 425-434.
  • 5Chang Hong, Yeung D-Y, Xiong Yi-min. Super-resolution through neighbor embedding[C]//IEEE Conference on Com- puter Vision and Pattern Recognition. 2004:275-282.
  • 6Yang Jian-chao, Tang Hao, Ma Yi, et al. Face hallucination via sparse coding[C]//IEEE Conference on Image Processing. 2008 : 1264-1267.
  • 7Liu C, Shum H, Freeman W T. Face hallucination: Theory and practice[J]. International Journal of Computer Vision, 2007,75 (1):115-134.
  • 8Huang H,He H,et al. Super-resolution of human face image u- sing canonical correlation analysis [J]. Pattern Recognition, 2010,43 (7) : 2532-2543.
  • 9Ma X,Zhang J, Qi C. Hallucinating face by position-patch[J]. Pattern Recognition, 2010,43(1): 2224-2236.
  • 10Jung C,Jiao L, Liu B, et al. Position-Patch Based Face Halluci- nation Using Convex Optimization[J]. IEEE Signal Processing Letters, 2011,18 (6) : 367-370.

共引文献8

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部