摘要
引入欧氏距离来度量基于离差最大化法与熵系数法确定的两个权重向量的相似度,在相似度最大约束条件下,确定了熵系数法中参数ρ值,解决了参数ρ取值人为主观性的问题。采用区间数来表示专家对指标间的相对重要性,克服了实际中难于得到准确决策信息的问题。将区间数特征向量法确定的主观权重和改进的熵系数法确定的客观权重集成得到组合权重,采用加权算术平均算子对4种预警机的探测引导能力进行了计算。
The Euclidea distance is adopted to weigh the similarity of two weight vector confirmed by maximum deviation method and entropy coefficient method. In the greatest similarity constraint conditions,the value of ρ in the entropy coefficient method is confirmed. The human subjectivity problem about choosing the value of ρ is solved. Interval numbers are used to represent the relative importance of assement indexes,and the difficulty to obtain accure information in actual decision problems is overcome. The combinition weight are integrated by the subjective weight determined by interval numbers eigenvector method and the objective weight determined by entropy coefficient method. Weighted arithmetic averaging operator is adopted to calculate four kinds of early-warning aricraft detection and guidance performance.
出处
《火力与指挥控制》
CSCD
北大核心
2015年第2期161-164,共4页
Fire Control & Command Control
关键词
区间数
预警机
熵系数
离差最大化
特征向量法
interval number
early-warning aircraft
entropy coefficient
maximal deviation
eigenvector method