期刊文献+

一种风电功率的复合预测

Compound forecasting a wind power
下载PDF
导出
摘要 本文以东南沿海地区某风力发电场数据为背景,在分析原始数据特点后,确定了相应的缺失数据的填补方法以及数据的预分解方法。之后针对数据预处理结果建立了基于时间序列和优化的BP神经网络复合预测模型,并给出风电功率预测结果。最后比较了复合模型与其它模型预测的均方误差以说明复合预测模型在提高预测精度方面的优势。 In this paper,a wind power generation field data in southeast coastal area as the background, in the analysis of the original data characteristics,determine the missing data filling method and corresponding data pre decomposition method.After data preprocessing results according to the established BP neural network composite time series prediction model and Optimization Based on wind power,and gives the result.Mean square error and finally compared the prediction of composite model and other models to illustrate the advantage of combined forecasting model in improving the accuracy of prediction.
出处 《电子测试》 2015年第2期51-53,共3页 Electronic Test
基金 国家电网公司科技项目:海上电场(群)的发电功率预测算法研究 国家自然科学基金项目(No.71271165)
关键词 风电预测 缺失数据 神经网络 复合预测模型 wind power prediction missing data neural network combined forecasting model
  • 相关文献

参考文献5

二级参考文献38

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:185
  • 3焦李成,谭山,刘芳.脊波理论:从脊波变换到Curvelet变换[J].工程数学学报,2005,22(5):761-773. 被引量:40
  • 4杨淑媛,焦李成,王敏.一种自适应脊波网络模型[J].西安电子科技大学学报,2005,32(6):890-894. 被引量:9
  • 5牛东晓.电力负荷预测技术及其应用[M].北京:中国电力出版社,2006.
  • 6CANDES E J. Ridgelets~ theory and applications [D]. Palo Alto, CA, USA: Stanford University, 1998.
  • 7CANDES E J, DONOHO D L. Ridgelets: a key to higherdimensional intermittency? [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 1999, 357: 2495-2509.
  • 8YANG S Y, WANG M, JIAO L C. A new adaptive ridgeletneural network [C]// Proceedings of the 2nd International Symposium on Neural Networks (ISSN '05), May 30-June 1, 2005, Chongqing, China. LNCS 3496. New York, NY, USA: Springer-Verlag, 2005: 385-391.
  • 9MIRANDA V, CERQUEIRE C, MONTEIRO C. Training a FIS with EPSO under an entropy criterion for wind power prediction[C]// Proceedings of the International Conference on Probabilistic Methods Applied to Power Systems, June 11-15, 2006, Stockholm, Sweden.
  • 10LEXIADIS M A, DOKOPOULO S P, SAMANOGLOU S H, et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68.

共引文献232

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部