期刊文献+

介孔SiO_2吸附CO_2的性能研究

CO_2 capture of three-dimensional worm-hole mesoporous silica
下载PDF
导出
摘要 以正硅酸乙酯(TEOS)为硅源,端氨基聚氧化丙烯醚(D2000)为模板剂,在水和乙醇的混合溶液中合成了蠕虫状介孔结构的介孔SiO_2(记为MSU-J)。采用物理浸渍的方法利用四乙烯五胺(TEPA)改性介孔MSU-J。采用红外、N_2吸附/脱附、元素分析表征改性介孔SiO_2。红外测试表明,经过物理浸渍可以将有机胺负载到介孔SiO_2上。N_2吸附/脱附试验表明,经过氨基修饰后,介孔SiO_2的介孔结构没有发生变化,但是介孔的孔容、孔径以及比表面积随着氨基浸渍量的增加而减小。在25℃和45℃,0.1 MPa下的纯CO_2吸附试验表明,氨基改性材料对CO_2吸附效果明显提高。当浸渍量为20%、吸附条件为25℃/0.1 MPa时,吸附量达到最大值138.6mg/g。当氨基含量继续增加时,吸附量反而降低。循环性试验表明,制备的吸附剂具有良好的循环性能,循环使用6次,材料的吸附量下降很少。 Using tetraethoxysilane (TEOS) as the silicone source and amino-terminated poly(propylene oxide) (D2000) as the template the mesoporous silica with three-dimensional worm-hole mesostructure (MSU-J) was prepared in the mixture of water and ethanol. Tetraethylenepentamine (TEPA) was employed to functionalize the MSU-J silica via wet impregnation method. The resultant samples were characterized by FT-IR, N2 adsorption/desorption and elemental analysis. The FI-IR analysis indicated that the organic amine was supported on the mesoprous SiO2. The results of N2 adsorption/desorption tests showed that after modification with amine the mesoporous structure did not change, but the pore volume, pore size and specific area were decreased with increasing the amine impregnation amount. The pure CO2 adsorption tests at 25℃and 45℃, 0.1 MPa revealed that the CO2 capture of amine-modified sample was obviously increased. The sample impregnated with 20%TEPA showed the highest adsorption capacity with the value of 138.6 mg/g at 25℃ and 0.1 MPa. But the capture was decreased when increasing further the amine content. The resultant adsorbent material exhibited satisfactory performance even after six adsorption–regeneration cycles.
出处 《粘接》 CAS 2015年第3期61-64,共4页 Adhesion
关键词 介孔SIO2 蠕虫型 吸附 物理浸渍 mesostructured silica worm-hole framework adsorption wet impregnation
  • 相关文献

参考文献4

二级参考文献56

  • 1Aaron D, Tsouris C. Separation of CO2 from flue gas: a review[J]. Sep Sci Technol, 2005, 40 (1-3): 321-348.
  • 2White C M, Strazisar B R, Granite E J, et ol. Separation and capture of CO2 from large stationary sources and sequestration in geological[J].Air Waste Manage Assoc,2003, 53 (6): 645-715.
  • 3Service R F. Choosing a CO2 Separation Technology[J]. Sci,2004,305(5686): 963-963.
  • 4Saito T, Kosugi S, Tsuchiya K, et al. Characteristics and performance of a deep-ocean disposal system for low-purity CO, gas via gas lift effect[J]. Energy Fuels,2001, 15 (2), 299-302.
  • 5Manovic V,Anthony E J. Parametric study on the CO2 capture capacity of CaO-based sorbents in looping cycles [J]. Energy Fuels,2008, 22(3): 1851-1857.
  • 6Satyapal S, Filburn T,Trela J,et al. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications[J]. Energy Fuels, 2001,15(2): 250-255.
  • 7Lu C,Bai H,Wu B,et al. Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites [J]. Energy Fuels,2008,22(5): 3050-3056.
  • 8Prezepio?rski J, Skrodzewicz M,Morawski A W. High temperature ammonia treatment of activated carbon for enhancement of CO: adsorption[J]. Appl Surf Sci. 2004, 225 (1-4): 235-242.
  • 9Kresge C T, Leonowicz M E,Roth W J,et ol. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359(22): 357-710.
  • 10Zhao D,Feng J,Huo Q,et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Sci,1998,279(5350): 548-552.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部