期刊文献+

基于目标跟踪的区域入侵检测方法研究 被引量:7

Research on area intrusion detection method based on target tracking
下载PDF
导出
摘要 智能视频监控在人们生产生活中的应用越来越广,区域入侵检测是智能视频监控的一个重要方面。主要研究了基于目标跟踪的区域入侵检测方法。首先采用混合高斯模型进行运动物体检测,在实际验证中获得了较好的前景检测效果;进一步采用了Mean-Shift算法对从前景检测图像中提取出的运动物体进行实时跟踪,能够实时标记出运动物体并绘制出运动轨迹。采用OpenCV的运动物体跟踪算法框架,在Qt软件开发平台上进行了算法验证,获得了较好的实验效果,充分验证了算法的跟踪效果和实时性,具有实际工程指导价值。 It is more and more widely that intelligent video surveillance is used in people's production and life.As we know,regional intrusion detection is a very important aspect of intelligent video surveillance.This paper mainly studies the regional intrusion detection method by using target tracking.Firstly,the moving object is detected by using Gaussian mixture model.In the practical test,foreground detection effect is good.Secondly,the Mean-Shift algorithm is used to track the moving objects that fetched from the foreground image,also with the motion trajectory marked in real time.Finally,the algorithm is validated based on the moving object tracking algorithm framework of OpenCV on Qt platform.The experimental results are very good.It reveal that the method has perfect tracking ability and realtime,and suggest high practical engineering guidance value.
出处 《电子测量技术》 2015年第2期51-54,63,共5页 Electronic Measurement Technology
关键词 智能视频监控 区域入侵 目标跟踪 MEAN-SHIFT QT intelligent video surveillance regional invasion target tracking Mean-Shift Qt
  • 相关文献

参考文献11

二级参考文献71

共引文献175

同被引文献84

  • 1张菁雯,秦攀,陈丽,李拥祺.非平稳随机系统的建模与预测控制[J].仪器仪表学报,2015,36(S01):261-264. 被引量:2
  • 2赵国峰,胡维礼.双电机驱动伺服系统齿隙非线性控制研究[J].电气传动,2005,35(2):24-27. 被引量:6
  • 3高贵,计科峰,匡纲要,李德仁.高分辨率SAR图像目标峰值提取及峰值稳定性分析[J].电子与信息学报,2005,27(4):561-565. 被引量:7
  • 4马娟丽,唐永哲,职晓波.低速摩擦伺服系统的滑模变结构控制研究[J].弹箭与制导学报,2007,27(3):77-79. 被引量:4
  • 5ZHANG K, ZHANG L, YANG M H. Real-time compres- sive tracking [ M ]. Computer Vision-ECCV, Springer Berlin Heidelberg, 2012: 864-877.
  • 6BERGER M, SEVERSKY L M. Subspace tracking under dynamic dimensionality for online background subtraction[ C]. IEEE Conference on Computer Vi-sion and Pattern Recognition, 2014: 1274-1281.
  • 7SEVILLA-LARA L, LEARNED-MILLER E. Distribution fields for tracking [ C ]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2012: 1910-1917.
  • 8ORON S, BAR-HILLEL A, LEVI D, et al. Locally or- derless tracking[ C]. IEEE Conference on Computer Vi- sion and Pattern Recognition, 2012: 1940-1947.
  • 9ZHANG T ZH, JIA K, XU CH SH, et al. Partial occlusion handling for visual tracking via robust part matching [ C ]. IEEE Conference on Computer Vision and Pattern Recogni- tion, Columbus, 2014: 1258-1265.
  • 10CHOI H S, KIM I S, CHOI J Y. Combining histogram- wise and pixe|-wise matchings for kernel tracking through constrained optimization[J]. Computer Vision and Image Understanding, 2014, 118 : 61-70.

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部