期刊文献+

飞机超机动状态动力学特征及对控制系统的挑战 被引量:17

Dynamic characteristics and challenges for control system of super-maneuverable aircraft
下载PDF
导出
摘要 超机动能力作为第四代战斗机的重要标志性特征,在近距空战中具有极其重要的作用.针对非线性非定常气动效应、强耦合和操纵器异构冗余等超机动状态飞机的基本动力学特征,分析了其非线性气动力/力矩、非定常迟滞效应、参数快时变、惯性耦合和推力矢量等因素给控制系统带来的挑战,总结了超机动飞机的非线性非定常气动力建模、飞行控制和控制分配的研究现状,给出了一种基于非线性补偿和气动力模型数据库的鲁棒解耦控制策略,为超机动飞行控制方法的工程应用提供了参考. Super-maneuverability is a critical feature of the fourth generation fighter, which plays an extremely important role in dogfight. The nonlinear unsteady aerodynamic effect, channel coupling and heterogeneous manipulator redundant which exist in the super-maneuver are analyzed. Challenges for control system brought by some special dynamic char-acteristics are deduced, such as nonlinear aerodynamic force and moment, unsteady hysteresis effect, fast time-varying parameters, inertial coupling and thrust vector. The research progress of the unsteady aerodynamic force, flight control and control allocation of super maneuver is summarized. Based on dynamic inversion methodology, a robust decoupling control strategy that adopted nonlinear compensation and aerodynamic model database is proposed, which could provide a reference for engineering applications of flight control for super-maneuverable aircraft.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第12期1650-1662,共13页 Control Theory & Applications
关键词 超机动 动力学 解耦控制 飞行控制 super-maneuverability dynamics decoupling control flight control
  • 相关文献

参考文献56

  • 1ALCORN C W, CROOM M A, FRANCIS M S, et al. The X-31 air- craft: advances in aircraft agility and performance [J]. Progress inAerospace Sciences, 1996, 32(4): 377 - 413.
  • 2R·C·比施根斯(俄).超声速飞机空气动力学和飞行力学[M].上海:上海交通大学出版社,2009.
  • 3SHIN Y, ANTHONY J C, MATTHEW J. Adaptive control of ad- vanced fighter aircraft in nonlinear flight regimes [J]. Journal of Guid- ance, Control, and Dynamics, 2008, 31(5): 1464- 1477.
  • 4WILSON E A, DAN A, PINHAS Z. Geometric evaluation of axisym- metric thrust-vectoring nozzles for aerodynamic performance predic- tions [J]. Journal of Propulsion and Power, 2002, 18(3): 712 - 716.
  • 5BARHAM R W. Thrust vector aided maneuvering of the YF-22 ad- vanced tactical fighter prototype [C]//Agard Conference Proceedings Agard CP. Paimdale: NASA, 1994:1 - 13.
  • 6GOMAN M, KHRABROV A. State-space representation of aerody- namic characteristics of an aircraft at high angles of attack [J]. Jour- nal of Aircrafi, 1994, 31(5): 1109 - 1115.
  • 7PANCHAL B, JAYWANT P K, TALOLE S E. Robust predictive con- trol of a class of nonlinear systems [J]. Journal of Guidance, Control, and Dynamics, 2014, 37(5): 1437- 1445.
  • 8SIEBERLING S, CHU Q P, MULDER J A. Robust flight control us- ing incremental nonlinear dynamic inversion and angular acceleration prediction [J]. Journal of Guidance, Control, and Dynamics, 2010, 33(6): 1732- 1742.
  • 9ISHIHARA A, BEN M S, NGUYEN N, et al. Time delay margin estimation for adaptive outer-loop longitudinal aircraft control [C] //AIAA Information Technology @ Aerospace Conference. Atlanta: AIAA, 2010.
  • 10KOSCHORKE J. Advanced flight control design and evaluation [D]. Stevinweg: Delft University of Technology, 2012.

二级参考文献34

共引文献22

同被引文献125

引证文献17

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部