期刊文献+

针对时间序列多步预测的聚类隐马尔科夫模型 被引量:24

Cluster-Based Hidden Markov Model in Time Series Multi-Step Prediction
下载PDF
导出
摘要 时间序列的预测在现今社会各个领域中有着广泛的应用.本文针对时间序列趋势预测中的多步预测问题,提出了基于聚类的隐马尔科夫模型,利用隐马尔科夫模型中的隐状态来表示产生时间序列数据时的系统内部状态,实现对多步时间序列的预测.针对时间序列聚类中的距离计算问题,提出结合时间序列时间性和相似性的聚类算法,并给出了迭代精化基于聚类的隐马尔科夫模型的方法.实验表明,本文提出的方法在时间序列多步预测中精度较高. The study of time series prediction is pervasive in various fields .We propose a cluster-based hidden Markov model to approach the multi-step prediction problem in time series .As multi-step time series prediction problem is not fully addressed from a system angle,we utilize the hidden state of hidden Markov model to represent the inner state of a time series production system . We also promote a cluster algorithm combining the temporal and similarity criteria to address the distance calculating issue in time series clustering .This non-trivial criterion proves effective in multi-step time series prediction .Through a non-parameter approximate method we estimate the inner hidden state distributes from every single state .And we also prove the correctness of an iteratively re-finement of the cluster-based hidden Markov model(HMM).Experimental results on authentic data indicate the effectiveness and accuracy of this approach .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第12期2359-2364,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60903035 No.41001296) 国家高技术研究发展计划(863计划)课题(No.2013AA12A301)
关键词 时间序列 多步预测 隐马尔科夫模型 聚类 time series multi-step prediction hidden Markov model(HMM) cluster
  • 相关文献

参考文献15

  • 1李晓光,宋宝燕,张昕.基于滑动多窗口的时间序列流趋势变化检测[J].电子学报,2010,38(2):321-326. 被引量:14
  • 2Box G, Jenkins G, Reinsel G. Time Series Analysis: Forecasting and Conla'ol[M]. Upper Saddle River: Prentice Hall, 1994.1 - 784.
  • 3Keogh E J.A decade of progress in indexing and mining large time series databases[ A]. Dayal U. International Conference on Very Large Data Bases[ C]. San Fransisco: Morgan Kaufmaim, 2006.1268 - 1269.
  • 4Faloutsos C, Ranganathan M, Manolopoulos Y. Fast subse- quence matching in time-series databases[ A]. Snodgrass R T.ACM Conference on Management of Data [ C ]. New York: ACM, 1994.419 - 429.
  • 5Keogh E, Pazzani M. An enhanced representation of time series which allows fast and accurate classification, clustering and rel- evance feedback[ A ]. Stolorz P E. ACM Knowledge Discovery and Data Mining[C] .New York: ACM, 1998.239 - 243.
  • 6Keogh E, Chakrabarti K, Pazzani M, Mehrotra S. Dimensionali- ty reduction for fast similarity search in large time series databases[ A ]. Knowledge and Information System [ C ]. Lon- don: Springer, 2001.263 - 286.
  • 7Lin J, Keogh E J, Wei L, and S. Lonardi. Experiencing sax: a novel symbolic representation of time series[ A ]. Data Mining and Knowledge Discovery[ C]. London: Springer, 2007. 107 - 144.
  • 8Mueen A, Keogh E. Online discovery and maintenance of time series motifs[ A]. Tomkins A. ACM Knowledge Discovery and Data Mining[ C] .New York:ACM,2010. 1089 - 1098.
  • 9Wang Y,Zhou L.Mining complex time-series data by learning the temporal slructure using Bayesian techniques and Markovian models[ A ]. International Conference on Data Mining [ C]. Washington: IF.EF. Press, 2006.1136 - 1140.
  • 10Won P, Melek W, Golnaraghi F. A Kalmart/particle filter- based position and orientation esth,aation method using a posi- tion seusor/ineal measurement unit hybrid system industrial electronics [J]. IEEE Transactions on Industrial Electronics, 2010,57(5) : 1787 - 1798.

二级参考文献111

  • 1Shai Ben David, Johannes Gehrke, Daniel Kifer. Detecting change in data stream[ A] .In Proc. of VLDB[ C] .San Fransisco:Morgan Kaufmann,2004.180- 191.
  • 2Eamonn Keogh, Jessica Lin,Ada Fu. HOT SAX:Finding Most Unusual Time Series Subsequence:Algorithms and Applications [ J ]. Knowledge and Information Systems, 2037,11 ( 1 ) : 1 - 27.
  • 3Yamanishi K, Takeuchi J. Discovering Outlier Filtering Rules from Unlabeled Data:Combining a Supervised Learner with an Unsupervised Learner[ A]. In Proc. of KDD [ C ]. New York: ACM, 2001. 389 - 394.
  • 4Knorr E M. Outliers and Data Mining: Finding Exceptions in Data[ D]. Canada: Univesity of British Columbia, 2002.
  • 5Breunig M M, Kriegel H P, Ng R T, et al. LOF: Identifying Density based Local Outliers [ A ]. In Proc. of SIGMOD [ C ]. New York: ACM,2000. 427 - 438.
  • 6He Zengyou, Xu Xiaofei, Deng Shengchun. Discovering Cluster based Local Outliers [ J ]. Pattern Recognition Letters, 2003,24 (9/10) : 1651 - 1660.
  • 7Harkins S, He H, Willams G J, et al. Outlier Detection Using Replicator Neural Networks[ A]. In Proc. of the 4th International Conference on Data Warehousing and Knowledge Discovery[ C ]. Springer-Verlag : London, 2002.170 - 180.
  • 8QiuXia Chen, Lei Chen, Xiang Lian, Yunhao Liu , Jeffrey Xu Yu. Indexable PLA for Efficient Similarity Search [ A ]. In Proc. of VLDB[ C]. New York: ACM, 2007.435 - 446.
  • 9Y L Wu, D Agrawal, A E Abbadi. A comparison of DPT and DWT based similarity search in time-series databases[ A ]. In Proc. of CTKM[ C]. New York: ACM, 2000.488 - 495.
  • 10K P Chan, A W Fu. Efficient time series matching by wavelets [ A]. In Proc. of ICDE [ C]. Washington: IEEE Computer Society, 1999.126,.

共引文献52

同被引文献189

引证文献24

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部