摘要
为提高神经网络的逼近和预测能力,提出一种各维输入为离散序列的量子衍生神经网络模型及算法.该模型为三层结构,隐层为量子衍生神经元,输出层为普通神经元.量子衍生神经元由量子旋转门和多位受控旋转门组成,利用多位受控旋转门中目标量子位的输出向输入端的反馈,实现对输入序列的整体记忆,利用受控旋转门输出中多位量子比特的纠缠获得量子衍生神经元的输出.基于量子计算理论设计了该模型的学习算法.该模型可从宽度和深度两方面获取输入序列的特征.仿真结果表明,当输入节点数和序列长度满足一定关系时,该模型明显优于普通神经网络.
To enhance the approximation and generalization ability of classical artificial neural networks,a quantum-inspired neural network model,whose input of each dimension is a discrete sequence,is proposed .This model concludes three layers,in which the hidden layer consists of quantum-inspired neurons,and the output layer consists of common neurons .The quantum-in-spired neuron consists of the quantum rotation gates and the multi-qubits controlled-rotation gates .By using the information feedback of target qubit from output to input in multi-qubits controlled-rotation gate,the overall memory of input sequences is realized .The output of quantum-inspired neuron is obtained from the entanglements of multi-qubits in controlled-rotation gates .The learning algo-rithm is designed in detail according to the basic principles of quantum computation .The characteristics of input sequence can be ef-fectively obtained by way of“breadth”and“depth”.The simulation results show that,when the input nodes and the length of the sequence satisfy a certain relations,the proposed model is obviously superior to the common artificial neural networks .
出处
《电子学报》
EI
CAS
CSCD
北大核心
2014年第12期2401-2408,共8页
Acta Electronica Sinica
基金
国家自然科学基金(No.61170132)
关键词
量子计算
量子旋转门
受控旋转门
量子神衍生经元
量子衍生神经网络
quantum computation
quantum rotation gate
controlled-rotation gate
quantum-inspired neuron
quantum-in-spired neural networks