期刊文献+

基于联合总变分最小化的视频压缩感知重建算法 被引量:8

Reconstruction Algorithm for Compressed Sensing of Video Based on Joint Total Variation Minimization
下载PDF
导出
摘要 在接收端进行预测和补偿的残差重建算法是一种高效的视频压缩感知重建算法.但是,残差重建算法没有应用当前图像的稀疏先验,算法性能完全依赖于预测结果的准确性.针对此问题,本文提出了一种基于联合总变分最小化的视频压缩感知重建算法以提升重建图像质量.为了联合应用待重建图像及对应残差值的稀疏先验,在所建立的重建模型中,分别计算目标图像块及其残差值的总变分范数;为求解最小化问题,引入新的变量,并基于split Bregman方法设计了一种迭代求解算法.实验结果表明,与同类算法相比,提出的重建算法可以在相同采样率下获得更高质量的重建图像. The residual reconstruction algorithm,which performs prediction and compensation at the receiver side,is an effi-cient reconstruction algorithm for compressed sensing of video .However,the residual reconstruction algorithm doesn’t make use of the sparsity prior of an image,and the performance of the algorithm all relies on the accuracy of prediction .This paper proposes a reconstruction algorithm based on joint total variation (TV)minimization to improve the quality of reconstructed images .In order to jointly exploit the sparsity of images and their residual,TV norm of a target image block and TV norm of its residual are both calcu-lated in the established reconstruction model .To solve the minimization problem,new variables are introduced,and an iterative algo-rithm is developed based on the split Bregman method .The experimental results show that when compared with other traditional al-gorithms,the proposed algorithm is able to provide higher quality of reconstructed images at the same sampling rates .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第12期2415-2421,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61261023 No.61401108) 广西自然科学基金(No.2011GXNSFD018024 No.2013GXNSFBA019272) 广西教育厅科研项目(No.201203YB001)
关键词 压缩感知 总变分 稀疏先验 残差重建 compressed sensing total variation sparsity prior residual reconstruction
  • 相关文献

参考文献15

  • 1Cands E, Romberg J, Tao T. Robust uncertainty principles: ex- act signal reconstruction from highly incomplete frequency in- fonnation[J]. IEEE Transactions on Information Theory, 2006, 52(2) :489 - 509.
  • 2石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712
  • 3Liu Ying, Li Ming, Dimilris A P. Motion-aware decoding of compressed-sensed video [ J ]. IEEE Transactions on Circuits and Systems for Video Technology,2013,23(3) :438 - 444.
  • 4Ma Jian-wei, Plonka G, Hussaini M Y. Compressive video sam- pling with approximate message passing decoding [ J ]. IF, EE Transactions on Circuits and Systems for Video Technology, 2012,22(9) : 1354 - 1364.
  • 5Li Cheng-bo, Jiang Hong, Patti W, et al. A new compressive video sensing framework for mobile broadcast[ J ] IEEE Trans- actions on Broadcasting, 2013,59( 1 ) : 197 - 205.
  • 6Mun S, Fowler J E. Residual reconstruction for block-based compressed sensing of video [A ]. Proceedings of the Data Compression Conference (DCC) [ C ]. Snowbird, USA: IEEEPress,2011.183 - 192.
  • 7Tramel E, Fowler J E. Video compressed sensing with multihy- pothesis[A]. Proceedings of the Data Compression Conference (DCC) [ C] .Snowbird, USA: 1EE.E Press,2011. 193 - 202.
  • 8Trocan M, Tramel E, Fowler J E, et al. Compressed-sensing re- covery of multiview image and video sequences using signal prediction[ OL ]. http://link, springer, corn/article/10. 1007 % 2Fs11042-012-1330-7,2013-01-15.
  • 9李星秀,韦志辉.基于局部自回归模型的压缩感知视频图像递归重建算法[J].电子学报,2012,40(9):1795-1800. 被引量:5
  • 10Goldstein T, Osher S. The split Bregrnan method for 11 regu- larized problems [J]. SIAM Journal on Imaging Sciences, 2009,2(2) : 323 - 343.

二级参考文献97

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献715

同被引文献54

  • 1CANDESEJ,ROMBERGJ,TAOT.Robustuncertaintyprinciples:exactsignalreconstructionfromhighlyincom-pletefrequencyinformation[J].IEEETransactionsonInformationTheory,2006,52(2):489-509.
  • 2DONOHODL.Compressedsensing[J].IEEETransac-tionsonInformationTheory,2006,52(4):1289-1306.
  • 3QAISARS,BILALR M,IQBAlW,etal.Compressivesensing:fromtheorytoapplications,asurvey[J].JournalofCommunicationsandNetworks,2013,15(5):443-456.
  • 4LIU Y,LIM,PADOSD A.Motion-awaredecodingofcompressed-sensedvideo[J].IEEETransactionsonCir-cuitsandSystemsforVideoTechnology,2013,23(3):438-444.
  • 5NARAYANANS,MAKURA.Compressivecodedvideocompressionusingmeasurementdomainmotionestima-tion[C]∥ ProceedingsofIEEEInternationalConfe-renceon Electronics,Computingand CommunicationTechnologies.Bangalore:IEEE,2014:1-6.
  • 6GUOJ,SONGB,LIUHX,etal.Motionestimationinmeasurementdomainforcompressedvideosensing[C]∥ProceedingsofIEEEInternationalConferenceonCompu-terandInformationTechnology.Xian:IEEE,2014:441-445.
  • 7MUN S,FOWLER JE.Residualreconstruction forblock-basedcompressedsensingofvideo[C]∥ Pro-ceedingsofIEEEDataCompressionConference.Snow-bird:IEEE,2011:183-192.
  • 8MUNS,FOWLER JE.Blockcompressedsensingofimagesusingdirectionaltransforms[C]∥ProceedingsofIEEEInternationalConferenceonImageProcessing.Cairo:IEEE,2009:3021-3024.
  • 9TRAMELEW,FOWLERJE.Videocompressedsen-singwithmultihypothesis[C]∥ ProceedingsofIEEEDataCompressionConference.Snowbird:IEEE,2011:193-202.
  • 10KIM SE,HANJK,KIM JG.AnefficientschemeformotionestimationusingmultireferenceframesinH264/AVC[J].IEEETransactionsonMultimedia,2006,8(3):457-466.

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部