期刊文献+

优化样本分布的最接近支持向量机 被引量:2

Proximal Support Vector Machine Based on Optimizing Sample Distribution
下载PDF
导出
摘要 当两类样本分布存在差异时,最接近支持向量机(Proximal Support Vector Machine,PSVM)等最小二乘类分类器分类结果将出现偏差,不能实现最小错误率分类.本文在分析PSVM等价广义特征值分解模型基础上,提出了一种改善原PSVM分类决策面的优化样本分布PSVM,其基本思想是通过引入最大化正确分类样本距决策面距离,同时最小化错误分类样本距决策面距离的优化样本分布正则化项,构造优化样本分布PSVM的广义特征值分解模型.通过人工数据集和UCI数据集的10个数据子集上的对比实验,验证了该改进分类模型能够有效调整决策边界,从而获得更好的分类效果. When the distributions of 2 class samples are different,the classification results will be biased by using least square classifiers,such as proximal support vector machine (PSVM).Inevitably,this decision bias will cause non-minimal classification er-ror rates .In the present paper,based on equivalent generalized eigenvalue decomposition model of PSVM,a novel optimizing sam-ples distribution PSVM model is proposed,which can improve original PSVM decision .The model is constructed as a generalized eigenvalue decomposition model and contains an optimal samples distribution regularization item .It can maximize distances between correctly classified samples and decision boundary and minimize distances between misclassified samples and decision boundary .Ex-perimental results under artificial datasets and 10 data subsets from UCI datasets show that using this novel model can adjust decision effectively and achieve better classification effects .
作者 杨勃
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第12期2429-2434,共6页 Acta Electronica Sinica
基金 国家973预研项目(No.2014CB046300) 湖南省科技计划(No.2012WK4015 No.2013GK3099 No.2014GK3026) 湖南省教育厅科学研究优秀青年项目(No.11B055) 湖南省创新团队支持计划(No.湘教通〔2012〕318号)
关键词 最接近支持向量机 优化样本分布 正则化技术 proximal support vector machine(PSVM) optimizing sample dislribution regularization technique
  • 相关文献

参考文献15

  • 1Duda R O, Hart P E, Stork D G. Pattern Classification[ M]. Second Edition. New York: Wiley-Interscience, 2000. 239 - 245.
  • 2Yang Xubing, Chen Songcan, Chen Bin, et al. Proximal support vector machine using local information [ J ]. Neurocomputing, 2009,73(l - 3) :357 - 365.
  • 3王国胜,钟义信.支持向量机的若干新进展[J].电子学报,2001,29(10):1397-1400. 被引量:74
  • 4Murphy P M, Aha D W. UCI machine learningrepository [OL] . http://www, ics. uci. edu/- mlearn/MLRepository. hanl, 1992.
  • 5Jayadeva K R, Chandra S. Fuzzy linear proximal support vector machines for multi-category data classification [J ]. Neurocom- puling, 2005,67 (8) : 426 - 435.
  • 6Sugumaran V, Muralidharan V, Ramachandran K I. Feature selection using decision tree and classification through proxi- mal support vector machine for fault diagnostics of roller bear- ing[J]. Mechanical Systems and Signal Processing, 2007,21 (2) :930 - 942.
  • 7Suykens J A K, Vandewalle J.Least square support vector ma- chine classifier[ J]. Neural Processing Letters, 1999,9 ( 3 ) : 293 - 300.
  • 8Mangasarian O L, Wild E W. Multisurface proximal support vector machine classification via generalized eigenvalues [ J ]. IRF, E Transactions on Pattern Analysis and Machine Intelli- gence,2006,28(1) :69 - 74.
  • 9杨绪兵,陈松灿.基于原型超平面的多类最接近支持向量机[J].计算机研究与发展,2006,43(10):1700-1705. 被引量:16
  • 10Saravanan N, Kumar V N S, Ramachandran K I. Fault diagno- sis of spur bevel gear box using artificial neural network (ANN), and proximal support vector machine ( PSVM ) [ J ]. Applied Soft Computing,2010,10( 1 ) :344 - 360.

二级参考文献19

  • 1李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 2Amari S,Neural Networks,1999年,12卷,783页
  • 3G Fung,O L Mangasarian.Proximal support vector machine classifiers[C].In:Proc of Knowledge Discovery and Data Mining.New York:ACM Press,2001.77-86
  • 4T Evgeniou,M pontil,T Poggio.Regularization networks and support vector machines[J].Advances in Computational Mathematics,2000,13(1):1-50
  • 5J A K Suykens,T Van Gestel,J DeBrabanter,et al.Least Squares Support Vector Machines[M].Singapore:World Scientific Publishing Co,2002
  • 6O L Mangasarian,E W Wild.Multisurface proximal support vector machine classification via generalized eigenvalues[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28(1):69-74
  • 7R O Duda,P E Hart,D G Stock.Pattern Classification[M].2nd Edition.New York:John Wiley & Sons,Inc,2001
  • 8S Haykin.Neural Networks:A Comprehensive Foundation,2nd Edition.Englewood Cliffs,NJ:Pretice-Hall,Inc,2001
  • 9Haifeng Li,Tao Jiang,Keshu Zhang.Efficient and robust feature extraction by maximum margin criterion[C].In:Proc Conf Advances in Neural Information Processing Systems.Cambrigde,MA:MIT Press,2004.97-104
  • 10P M Murphy,D W Aha.UCI machine learning repository[OL].http://www.ics.uci.edu/~mlearn/MLRepository.html,1992

共引文献96

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部