期刊文献+

具有控制结构与不变凸映射的向量优化问题 被引量:3

Optimization problem of vector with domination structure and invex mappings
下载PDF
导出
摘要 在无限维赋范线性空间中,研究具有控制结构与不变凸映射的向量似变分不等式问题与向量优化问题,分析两类问题的解之间的关系,得到它们的弱有效解与有效解的存在定理。 Vector variational-like inequality problem and vector optimization problem with domination structure and invex mappings were studied in infinite-dimensional normed linear spaces. We analysed the relationship between solutions of these two problems,and obtained existence theorems of weak efficient solutions and efficient solutions for the two problems.
作者 傅俊义
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2014年第1期4-7,共4页 Journal of Nanchang University(Natural Science)
关键词 向量优化问题 向量似变分不等式 不变凸映射 弱有效解 有效解 Vector optimization problem vector variational-like inequality invex mapping weak efficient solution efficient solution
  • 相关文献

参考文献11

  • 1CHEN G Y, HUANG X X, YANG X Q. Vector Opti mization, Set-Valued and Variational Analysis [M]. Berlin, Heidelberg,Springer-Verlag, 2005.
  • 2LUC D T . Theory of Vector Optimization [M]. Springer-Verlag, Berlin, New York, 1984.
  • 3JAHN J. Mathematical Vector Optimization in Parti- cally Ordered Linear Spaces [M]. Verlag Peter Lang, Frankfurt am Main Bern, New York, 1986.
  • 4HANSON M A. On Sufficiency of the Kuhn-Tucker Conditions[J]. Journal of Mathematical Analysis and Applications, 1982,80 : 545-550.
  • 5BENLSREAL A, MOND B. What is Invexity? [J]. Journal of Australian Mathematical Society (Ser. B), 1986,28:1-9.
  • 6HANSON M A, MOND B. Convex Transformable Programming Problems and Invexity Florida State Uni- versity Statistics Report M715,1985.
  • 7WEIR T, JEYAKUMAR V. A Class of Nonconvex Functions and Mathematical Programming[J].Bulletn of Australian Mathematical Society, 1998,38 : 177-189.
  • 8KAZMI K R. Existence of Solutions for Vector Opti- mization[J]. Applied Mathematics Letters, 1996,9 (6) : 19-22.
  • 9鲍培文.一个向量类变分不等式及其应用[J].南昌大学学报(理科版),2010,34(3):227-229. 被引量:1
  • 10FANG Y P, HUANG N J. Strong Vector Variational Inequalities in Banach Spaces[J]. Applied Mathematics Letters, 2006,19 : 362-368.

二级参考文献14

  • 1鲍培文.局部紧集上的广义向量均衡问题[J].南昌大学学报(理科版),2007,31(1):21-24. 被引量:1
  • 2傅春晖,傅俊义.随机向量平衡系统解的存在性[J].南昌大学学报(理科版),2007,31(3):224-228. 被引量:1
  • 3Chen G Y, Huang X X, Yang X Q. Vector Optimization, Set - Valued and Variational Analysis [ M ]. Springer - Verlag. Berlin, Heidelberg,2005.
  • 4Ansari Q H, Schaible S, Yao J C. System of Vector Equilibrium Problems and Its Applications [ J ]. Journal of Optimization Theory and Applications ,2000,107:547 - 557.
  • 5Ansari Q H, Chan W K, Yang X Q. The System of Vector Quasi - Equilibrium Problems with Applications [ J ]. Journal of Global Optimization,2004,29:45 - 57.
  • 6Giannessi F. Vector Variational Inequalities and Vector Equilibria. Mathematical Theoreies [ M ]. Dordrecht/Boston/London. Kluwer Academic Publlshers,2000.
  • 7Blum E, Oettli W. From Optimization and Variational Inequalities to Equilibrium Problems [ J ]. The Mathematics Student, 1994,63 : 123 - 145.
  • 8Fang Y P, Huang N J. Strong Vector Variational Inequalities in Banach Spaces[ J]. Appl Math Lett,2006,19:362 - 368.
  • 9Deguire P, Tan K K, Yuan G X Z. The Study of Maximal Elements, Fixed Points for LS - majorized Mappings and Their Applications to Minimax and Variational Inequalities in the Product Topological Spaces [ J ]. Nonlinear A- nalysis,Theory Methods and Applications, 1999,37:933 -951.
  • 10Tanaka T. Generalized Quasiconvexities, Cone Saddle Points, and Minimax Theorem for Vector - valuedfunctions [J]. J Optim Theory Appl,1994,81:355 -377.

共引文献5

同被引文献21

  • 1XUYihong,LIUSanyang.KUHN-TUCKER NECESSARY CONDITIONS FOR (h, ψ)-MULTIOBJECTIVE OPTIMIZATION PROBLEMS[J].Journal of Systems Science & Complexity,2004,17(4):472-484. 被引量:6
  • 2FU J Y,WANG S H. Generalized Strong Vector Quasi-equilibrium Problem with Domination Structure[J].J Glob Optim, 2013,55 : 839-847.
  • 3FU J Y. Generalized Vector Quasi-equilibrium Problems[J]. Math Meth Oper Res,2000,52:57-64.
  • 4WEIR T, JEYAKUMAR V. A Class of Nonconvex Functions and Mathematical Programming[J]. Bulletn of Australian Mathematical Society, 1998, 38: 177- 189.
  • 5JAHN J. Mathematical Vector Optimization in Partially Ordered Linear Spaces[M]. New York, Verlag Peter Lang, 1986.
  • 6CHEN G Y,HUANG X X,YANG X Q. Vector Optimization, Set-Valued and Variational Analysis [M]. Berlin, Heidelberg, Springer-Verlag, 2005.
  • 7Zadeh LA.Fuzzy sets. Information and Control . 1965
  • 8Bazaraa. M. and Shetty. C.Nonlinear programming: theory and algorithm, John Wiley & Sons. New York . 1979
  • 9A. Rufián-Lizana,Y. Chalco-Cano,G. Ruiz-Garzón,H. Román-Flores.??On some characterizations of preinvex fuzzy mappings(J)TOP . 2014 (2)
  • 10K. Q. Zhao,X. Wan,X. M. Yang.??A note on characterizing solution set of nonsmooth pseudoinvex optimization problem(J)Optimization Letters . 2013 (1)

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部