期刊文献+

SINGULAR INTEGRAL DIFFERENTIAL EQUATIONS WITH BOTH CAUCHY KERNEL AND CONVOLUTION KERNEL AND RIEMANN BOUNDARY VALUE PROBLEM

SINGULAR INTEGRAL DIFFERENTIAL EQUATIONS WITH BOTH CAUCHY KERNEL AND CONVOLUTION KERNEL AND RIEMANN BOUNDARY VALUE PROBLEM
原文传递
导出
摘要 In this paper, we set up and discuss a kind of singular integral differential equation with convolution kernel and Canchy kernel. By Fourier transform and some lemmas, we turn this class of equations into Riemann boundary value problems, and obtain the general solution and the condition of solvability in class {0}. In this paper, we set up and discuss a kind of singular integral differential equation with convolution kernel and Canchy kernel. By Fourier transform and some lemmas, we turn this class of equations into Riemann boundary value problems, and obtain the general solution and the condition of solvability in class {0}.
作者 Pingrun Li
出处 《Annals of Differential Equations》 2014年第4期407-415,共9页 微分方程年刊(英文版)
基金 Supported by the Qufu Normal University Youth Fund(XJ201218)
关键词 Cauchy kernel convolution kernel Fourier transform singular integral-differential equations Cauchy kernel convolution kernel Fourier transform singular integral-differential equations
  • 相关文献

参考文献3

二级参考文献6

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部