期刊文献+

基于认知无线网络的移动终端业务流的分析方法

A Network Traffic Analysis Method for Mobile Terminal Based on Cognitive Network
下载PDF
导出
摘要 针对认知移动终端业务流在多网络层具有不同复杂性的特点,提出了一种基于多时空尺度的业务特性分析方法。该方法首先建立多空间尺度业务模型,然后利用多尺度熵方法对终端业务流信息进行特征提取,对比分析不同时空尺度上网络行为的结构复杂度,探索其随时空尺度的变化规律,从而预测下一时段的业务量。实验数据分析的结果表明,该方法能够有效的实现业务流的在线监测。 For cognitive networks across multiple network layers have the characteristics of varying complexity,a traffic characteristics analysis method based on space and time scales is put forword. Firstly,the traffic model is established using multi-scale,and then network behavior at different temporal and spatial scales of structural complexity network behavior is analyzed; explore its change law of time scale,so as to accurately forecast the next period of time of business. The results of the experiment data analysis show that the method can effectively realize online monitoring of the business flow.
出处 《中国电子科学研究院学报》 2014年第6期575-581,共7页 Journal of China Academy of Electronics and Information Technology
基金 国家自然科学基金(60973027 61370212 61402127) 黑龙江省自然科学重点基金项目(ZD201102) 黑龙江省自然科学基金(F201037) 博士点基金优先发展领域项目(20122304130002) 教育部高等学校博士点基金(20102304120012) 中央高校基本科研业务费专项资金(HEUCF100601 HEUCFZ1213) 黑龙江省博士后基金(LBH-210204)资助
关键词 认知网络 多尺度熵 业务分析 跨层感知 cognitive network multi-scale entropy network traffic analysis cross-layer perception
  • 相关文献

参考文献9

  • 1王慧强,徐俊波,冯光升,王振东,陈晓明.认知网络体系结构研究新进展[J].计算机科学,2011,38(8):9-16. 被引量:16
  • 2THOMAS R W. Cognitive Networks[ D]. Blacksburg, VA, USA: Virginia Polytechnic and State University, 2007.
  • 3ZHAO RONGCAI, ZHANG SHUO. Network Traffic Gen- eration: A Combination of Stochastic and Self-similar [ C ]// 2010 2nd International Conference on Advanced Computer Control. 2010 : 171-175.
  • 4MADALENA C, ARY L. G. Muhiscale Entropy Analysis ( MSE ) [ EB/OL ] . http://www, physionet, org/phys- iotools/mse/tutorial/, 2014.
  • 5傅雷扬,王汝传,王海艳,任勋益.R/S方法求解网络流量自相似参数的实现与应用[J].南京航空航天大学学报,2007,39(3):358-362. 被引量:10
  • 6洪飞,吴志美.基于小波的多尺度网络流量预测模型[J].计算机学报,2006,29(1):166-170. 被引量:46
  • 7JANNE R, PETRI M, MATTHIAS W. Metrics for Char- acterizing Complexity of Network Traffic. [ C]// in Proc. of ICT, St. Petersburg, Russia, 2008.
  • 8VANDENDRIESSCHE B, PEPERSTRAETE H, ROGGE E, et al. A Muhiscale Entropy-Based Tool for Scoring Se- verity of Systemic Inflammation [ J ]. Critical care medi- cine, 2014,42(8) :5-8.
  • 9http ://www. isi. edu/nsnam/ns/,2014.

二级参考文献80

  • 1李梦君,李舟军,陈火旺.基于进程代数安全协议验证的研究综述[J].计算机研究与发展,2004,41(7):1097-1103. 被引量:25
  • 2高茜,罗军舟.区分服务网络中IP多播:问题与解决方案[J].计算机研究与发展,2005,42(5):823-829. 被引量:7
  • 3杨鹏,吴家皋.网络服务体系结构及其形式化模型的研究[J].计算机研究与发展,2005,42(7):1115-1122. 被引量:6
  • 4Krunz M. , Makowski A.. Modeling video traffic using M/G/infinity input processes: A compromise between markovian and LRD models. IEEE Journal on Selected Areas in Communications, 1998, 16(5):733-748.
  • 5Leland W. E, , Taqqu M. S, , Willinger W. , Wilson D. V., On the self-similar nature of ethernet traffic. IEEE/ACM Transactions on Networking, 1994, 2(1): 1-15.
  • 6Park K. , Kim G. , Crovella M.. On the effect of traffic self similarity on network performance. In: Proceedings of SHE International Conference Performance rand Control of Network Systems, Dallas, USA, 1997, 168-175.
  • 7Park K. , Willinger W.. Self-Similar Network Traffic and Performance Evaluation. Wiley-Interscience, 2000.
  • 8Paxson V. , Floyd S.. Wide-area traffic: The failure of poisson modelling. IEEE/ACM Transactions on Networking,1995, 3(3): 226-244.
  • 9Konstantina Papagiannaki, Nina Taft, Zhang Zhi I.i, Christophe Diot, Long-term forecasting of Internet backbone traffic:Observations and initial models. In:Proceedings of INFOCOM,London, UK, 2003, 753-764.
  • 10Groschwitz N. K. , Polyzos G. C.. A time series model of long-term NSFNET backbone traffic. In.. Proceedings of IEEE ICC,Pittsburgh, PA, 1994, 234-238.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部