期刊文献+

基于密度的空间聚类与霍夫变换相结合的欠定盲源分离混合矩阵估计 被引量:3

Mixing matrix estimation using density based spatial clustering combined with Hough Transform in underdetermined blind source separation
下载PDF
导出
摘要 为解决欠定盲源分离中混合矩阵估计问题,提出了一种基于密度的空间聚类与霍夫变换相结合的混合矩阵估计算法。该算法首先通过基于相角的单源时频点处理增强信号的稀疏性,然后针对K-means算法需预先设置聚类个数的问题,采用基于密度的空间聚类算法对单源点进行自动分类以估计源信号个数,进而估计得到混合矩阵。为提高估计混合矩阵的精度,采用霍夫变换方法修正聚类中心。基于密度的空间聚类算法的运用也克服了霍夫变换峰值簇拥问题。实验结果表明,基于密度的空间聚类与霍夫交换相结合的方法能在源信号数量未知情况下准确估计混合矩阵,且估计精度高于K-means算法和基于密度的空间聚类算法。 A method using the combination of density based spatial clustering and Hough transform is proposed to solve the mixing matrix estimation problem in underdetermined blind source separation. The method firstly conducts the single source point processing in the time-frequency domain based on phase angle to improve the signal sparsity,and then,to overcome the K-means algorithm' s restriction of giving the cluster number in advance, uses the density based spatial clustering algorithm to automatically classify single resource points to estimate the source signal number, and then estimates the mixing matrix. To imorove the mixing matrix estimation accuracy,the Hough transform is used to modify the clustering center. Moreover,the use of the density based spatial clustering algorithm can solve the peak clustering of Hough transform. The simulation results show that the proposed method using the density based spatial clustering and Hough transform can accurately estimate mixing matrixer when the source signal number is unknown, and its estimation accuracy is higher than the K-means method and the density based spatial clustering algorithm .
出处 《高技术通讯》 CAS CSCD 北大核心 2014年第12期1270-1278,共9页 Chinese High Technology Letters
基金 国家自然科学基金(51204145) 河北省自然科学基金(E2013203300) 河北省高等学校自然科学研究青年基金(Q2012087) 秦皇岛市科学技术研究与发展计划(201302A033)资助项目
关键词 欠定盲源分离(UBSS) 混合矩阵估计 霍夫变换 基于密度的空间聚类 K-MEANS underdetermined blind source separation ( UBSS), mixing matrix estimation, Hough transform, density based spatial clustering, K-means
  • 相关文献

参考文献14

  • 1Bofill P, Zibulevsky M. Underdetermined blind source sep- aration using sparse representations. Signal Processing, 2001,81(11):2353-2362.
  • 2Shindo H, Hirai Y. Blind source separation by a geomet- rical method. In: Proceedings of the International Joint Conference on Neural Networks (IJNN) , Honolulu, USA, 2002.1109-1114.
  • 3付宁,彭喜元.K-Hough欠定盲信道估计算法[J].电子测量与仪器学报,2008,22(5):63-67. 被引量:13
  • 4Cui Z T,Jian K. A new elgorithm to estimate mixing-matrix of underdetermined blind signal separation. In:Proceedings of the 8th International Conference on Computational Intel- ligence and Security( CIS), Guangzhou, China,2012. 374- 377.
  • 5Xie S L, Yang L, Yang J M, et al, Time-frequency ap- proach to underdetermined blind source separation. Neural Networks and Learning Systems, IEEE Transactions on, 2012,23 (2) :306-316.
  • 6Jiang H, Li J, Yi S H, et al. A new hybrid method based on partitioning-based DBSCAN and ant clustering. Expert Syster With Applications ,2011,38 ( 8 ) :9373-9381.
  • 7Zhou G X,Yang Z Y,Xie S L,et al. Mixing matrix estima- tion from sparse mixtures with unknown number of sources. IEEE Transactions on Neural Networks, 2011,22 (2) :211-221.
  • 8Peng D Z, Xiang Y. Underdetermined blind sources sepa- ration based on relaxed sparsity condition of sources. IEEE Transactions on Signal Processing, 2009,57 ( 2 ) : 809-814.
  • 9Bofill P. Identifying single source data for mixing matrix estimation in instantaneous blind source separation. In: Proceedings of the 18th Intenaational Conference on Artifi- cial Neural Networks ( ICANN 2008 ) , Prague, Czech Re- public, 2008. 759 -767.
  • 10Reju V G, Koh S N, Soon I Y. An algorithm for mixing matrix estimation in instantaneous blind source separa- tion. Signal Processing, 2009,89 ( 9 ) : 1762-1773.

二级参考文献2

共引文献12

同被引文献15

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部