期刊文献+

混合储能系统功率配置的建模与滚动优化控制 被引量:1

Modeling and receding horizon control of the power configuration of hybrid energy storage systems
下载PDF
导出
摘要 为平抑分布式电网可再生能源输出功率的波动,给出了一种混合储能系统功率配置滚动优化控制方法:利用储能电量守恒原理建立充-放电过程混合储能系统荷电量变化的连续时间数学模型;结合储能单元功率配置要求建立混合储能系统的约束模型和性能优化函数;采用滚动优化控制理论显式处理混合储能系统的荷电量模型、约束模型和性能优化函数,设计功率配置过程的滚动优化控制策略。通过算例仿真分析验证了该方法对可再生能源输出功率的平抑效果和满足储能系统约束的能力。 In order to smooth the fluctuations of renewable energy output power in a distributed generation system, the pa- per presents a method for receding horizon control of the power configuration of a hybrid energy storage system (HESS). The method has the following steps:Use the principle of conservation of energy storage to establish a con- tinuous-time mathematic model to describe the charge changing of the HESS during charging and discharging;For- mulate the constraint models and performance optimization functions of the HESS based on the power configuration requirements of energy storage units ; Use the receding horizon control theory to explicitly tackle the charge models, constraint models and performance optimization functions of the HESS, and design the scheme for receding horizon control of the power configuration process. The proposed method' s effectiveness of smoothing the fluctuations of the output power from renewable energy sources and the ability to satisfy the energy storage system' s constraints were verified by the simulation analysis of a numerical example.
作者 宋秀兰 俞立
出处 《高技术通讯》 CAS CSCD 北大核心 2014年第12期1279-1288,共10页 Chinese High Technology Letters
基金 国家自然科学基金(61374111)资助项目
关键词 分布式电网 混合储能系统 功率配置 滚动优化控制 distributed generation system, hybrid energy storage system, power configuration, receding horizon control
  • 相关文献

参考文献23

  • 1王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化,2008,32(20):1-4. 被引量:446
  • 2Divya KC, Qstergaard J. Battery energy storage technology for power systems-An overview. Electric Power Systems Re- search, 2009,79 ( 4 ) : 511-520.
  • 3黄伟,孙昶辉,吴子平,张建华.含分布式发电系统的微网技术研究综述[J].电网技术,2009,33(9):14-18. 被引量:324
  • 4Fanjun M, Akella R, Crow M L, et al. Distributed grid in- telligence for future microgrid with renewable sources and storage. In: Proceedings of the North American Power Sy- mopsium, Arlington, USA, 2010.1-6.
  • 5Zamora R, Srivastava A K. Controls for microgrids with storage : Review, challenges and research needs. Renewable and Sustainable Energy Reviews ,2010,14(7 ) :2009-2018.
  • 6Dougal R A,Liu S,White RE. Power and life extension of battery-ultracapacitor hybrids. IEEE Trans Components and Packaging Technologies ,2002,25 ( 1 ) : 120-131.
  • 7Haihua Z, Bhattacharya T, Duong T, et al. Composite ener- gy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications. IEEE Trans Power Electronics ,2011,26 (3) :923-930.
  • 8Etxeberria A, Vechiu I, Camblong H, Vinassa J M. Hybrid energy" storage systems for renewable energy sources inte- gration in microgrids : A review. In : Proceedings of IPEC, Singapore, 2010. 532 -537.
  • 9Dougal R A, Liu S, White R E. Power and life extension of battery-ultracapacitor hybrids. 1EEE Trans. Components and Packaging Technologies ,2002,25 ( 1 ) : 120-131.
  • 10唐西胜,武鑫,齐智平.超级电容器蓄电池混合储能独立光伏系统研究[J].太阳能学报,2007,28(2):178-183. 被引量:80

二级参考文献148

共引文献1491

同被引文献11

  • 1Si S B, Dui H Y, Cai Z Q, et al. Integrated importance measure of multi-state systems for maintenance processes. IEEE Transactions on Reliability, 2012, 61 (2) : 266-273.
  • 2Lisnianski A, Levitin G. Multi-State System Reliability. New York: World Scientific, 2003.
  • 3Gregory L. A universal generating function approach for the analysis of multi-state systems with dependent ele- ments. Reliability Engineering and System Safety, 2004, 84(3) : 285-292.
  • 4Fang Y F, Tao W L, Tee K F. Reliability analysis of re- pairable k-out-n system from time response under several times stochastic shocks. Smart Structures and Systems, 2014, 14(4) : 559-567.
  • 5Meyn S P, Tweedie R L. Markov Chains and Stochastic Stability. Beijing: Spring- Verlag, 1999.
  • 6Linmios N, Oprian G. Semi-Markov Processes and Relia- bility in Statistics for Industry and Technology. Boston: Birkhauser, 2001.
  • 7Barbu V, Limnios N. Semi-Markov Chain and Hidden Semi-Markov Models toward Applications in Lecture Notes in Statistic. New York : Springer-verlay, 2008.
  • 8Barbu V, Limnios N. Discrete Time Semi-Markov Proces- ses for Reliability and Survival Analysis-A Nonparametric Approach :, Parametric and Semi-Parametric Models with Applications to Reliability, Survival Analysis and Quality of Life. Boston: Statistics for Industry and Technology , 2OO4.
  • 9Fazlollahtabar H, Saidi-Mehrabad M, Balakrishnan J. In- tegrated markov-neural reliability computation method: A case for multiple automated guided vehicle system. Relia- bility Engineering & System Safety, 2015, 135, 34-44.
  • 10苗琳璐,王武,李玉榕.基于T-S模型的非线性系统故障诊断集员滤波器的设计[J].高技术通讯,2014,24(2):208-214. 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部