期刊文献+

Blow-up of Solutions for a Class of Fourth-order Equation Involving Dissipative Boundary Condition and Positive Initial Energy 被引量:1

Blow-up of Solutions for a Class of Fourth-order Equation Involving Dissipative Boundary Condition and Positive Initial Energy
原文传递
导出
摘要 In this paper we consider a forth order nonlinear wave equation with dissi- pative boundary condition. We show that there are solutions under some conditions on initial data which blow up in finite time with positive initial energy.
出处 《Journal of Partial Differential Equations》 2014年第4期347-356,共10页 偏微分方程(英文版)
  • 相关文献

参考文献17

  • 1An L. J., Peirce A., A weakly nonlinear analysis of elasto-plastic-microstructure models. SIAM J. Appl. Math., 55 (1995), 136-155.
  • 2Chen G., Yang Z., Existence and non-existence of global solutions for a class of nonlinear wave equations. Math. Methods Appl. Sci., 23 (2000), 615-631.
  • 3Zhou Y., Global existence and nonexistence for a nonlinear wave equation with damping and source terms. Math. Nachr., 278 (2005), 1341-1358.
  • 4Zhou Y., A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in RN. Appl. Math. Lett., 18 (2005), 281-286.
  • 5Zhou Y., Global nonexistence for a quasilinear evolution equation with critical lower energy. Arch. Inequal. Appl., 2 (2004), 41-47.
  • 6Bilgin B. A., Kalantarov V. K., Blow up of solutions to the initial boundary value problem for quasilinear strongly damped wave equations. J. Math. Anal. Appl., 403 (2013), 89-94.
  • 7Tahamtani F., Shahrouzi M., Existence and blow up of solutions to a Petrovsky equation with memory and nonlinear source term. Boundary Value Problems, 50 (2012), 1-15.
  • 8Shahrouzi M., Tahamtani E, Global nonexistence and stability of the solutions of inverse problems for a class of Petrovsky systems. Georgian Math., J., 19 (2012), 575-586.
  • 9Tahamtani F., Shahrouzi M., Asymptotic stability and blow up of solutions for a Petro- vsky inverse source problem with dissipative boundary condition. Math. Meth. Appl. Sci., 36 (2013), 829-839.
  • 10Chen W., Zhou Y., Global nonexistence for a semilinear Petrovsky equation. Nonl. Anal., 70 (2009), 3203-3208.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部