期刊文献+

最小二乘支持向量机的参数优选方法及其应用 被引量:7

Method for selecting parameters of least squares support vector machines and its application
下载PDF
导出
摘要 参数选择是支持向量机研究领域的重要问题,它本质上是一个优化搜索过程.以遗传算法和粒子群算法为基础探讨了基于两者的混合智能算法,将杂交操作、变异操作引入PSO算法中,同时,在种群随机搜索过程中嵌入确定性的模式搜索,使得算法可以在任何阶段进行精细搜索;在此基础上,提出了基于混合智能的最小二乘支持向量机方法(LS-SVM),以最小化k-fold交叉验证误差为评价函数,利用混合智能算法优化LS-SVM参数.最后结合实例对该方法进行了实证检验,并对结果进行分析. It is an important issue for support vector machines( SVMs) to choose parameters in engineering applications and theoretic research. By combining the evolution idea of genetic algorithm with the swarm intelligence of particle swarm optimization algorithm,a hybrid intelligent algorithm is developed and applied to water demand forecasting in the paper. It makes use of PSO algorithm characteristics such as parallel property and the global convergence performance to avoid the local optimum,and uses the evolution idea of genetic algorithm such as crossover and mutation operations to improve the speed of searching for the global optimization. On the other hand,a deterministic searching algorithm is embedded to improve its optimization performance,based on which the LS-SVM prediction model of water consumption is proposed,tuning LS-SVM parameters by hybrid intelligent algorithm. The application shows that the presented LS-SVM optimized by hybrid intelligent algorithm can offer more accurate forecasting result than SVM method,and has high generalization ability.
作者 刘丽娜
出处 《南昌工程学院学报》 CAS 2014年第6期15-19,共5页 Journal of Nanchang Institute of Technology
基金 国家自然科学青年基金资助项目(51309130) 江西省科技厅青年基金资助项目(20132BAB213025) 江西省教育厅青年科学基金项目(GJJ11254) 南昌工程学院青年基金项目(2014KJ001)
关键词 最小二乘支持向量机 混合智能算法 参数优选 least squares support vector machines(LS-SVM) hybrid intelligent algorithm parameter optimization
  • 相关文献

参考文献4

二级参考文献71

  • 1刘隽,周涛,周佩玲.GA优化支持向量机用于混沌时间序列预测[J].中国科学技术大学学报,2005,35(2):258-263. 被引量:21
  • 2林剑艺,程春田.支持向量机在中长期径流预报中的应用[J].水利学报,2006,37(6):681-686. 被引量:115
  • 3荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18(11):3204-3208. 被引量:79
  • 4VNVapnik 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5[1]Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S.,Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X.,et al., 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature,403:503-511.
  • 6[2]Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S., 2002.Choosing kernel parameters for support vector machines.Machine Learning, 46:131-159.
  • 7[3]Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines. Cambridge University Press,Cambridge.
  • 8[4]Dudoit, S., Fridlyand, J., Speed, T.P., 2002. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97:77-87.
  • 9[5]Furlanello, C., Serafini, M., Merler, S., Jurman, G., 2003. An accelerated procedure for recursive feature ranking on microarray data. Neural Networks, 16:641-648.
  • 10[6]Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing,J.R., Caligiuri, M.A., et al., 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531-537.

共引文献220

同被引文献44

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部