期刊文献+

中央执行负荷对贝叶斯推理的影响

A Study about the Influence of Central Executive Load on Bayesian Reasoning
下载PDF
导出
摘要 随机选取124名大学生为被试,采用双任务范式,考察了不同中央执行负荷对贝叶斯推理的影响。结果发现:(1)中央执行负荷影响贝叶斯推理成绩。具体来讲,这种影响的程度伴随着负荷强度的增加而增加,无负荷条件下的推理成绩最好,低负荷条件下次之,高负荷条件下最差。(2)只有在无负荷和低负荷条件下方体现出贝叶斯促进效应,在高负荷条件下没能体现出自然频数的促进效应。这表明,工作记忆资源是贝叶斯促进效应发生的充分非必要条件:贝叶斯推理过程中,可用于推理的资源较多时,贝叶斯促进效应才发生;当工作记忆资源不足时,促进效应不会发生。 In the experiment, we examined the relationship between central executive load and performance on Bayesian reasoning tasks in two kinds of question formats, and experimentally manipulated work memory resources in a dual task paradigm, The results showed: (1) central executive load had influence on Bayesian reasoning, specially, the magnitude of this effect was accompanied by an increase in work memory load intensity. When compared with the Bayesian performance in high load condition, the subjects performed better in low load condition and performed the best in no load condition. (2) we only found the effect of Bayesian facilitation in low load condition and no load condition. These results consistently indicated that performance on classical Bayesian reasoning tasks depends on participants' available work memory resources. Only when the resources used to resolve the Bayesian question were adequate, can we find the Bayesian facilitation effect. In a word, the effect of Bayesian facilitation existed, but not happened in all kinds of circumstances.
出处 《社会心理科学》 2015年第2期32-37,共6页 Science of Social Psychology
关键词 中央执行负荷 贝叶斯推理 贝叶斯促进 Central Executive Load Bayesian reasoning Bayesian facilitation
  • 相关文献

参考文献33

  • 1Eddy D.M. Probabilistic reasoning in clinic medicine: Problems and opportunities. In: Kahneman D, Slovic P, Tverskey A. ed. Judgement under uncertainty: Heuristics and biases[J]. Cambridge University Press, 1982: 249-267.
  • 2Kahneman D, & Tversky A. Judgement under uncertainty Heuristics and biases [M]. Cambridge University Press, 1982 249-267.
  • 3Gavanski I, & Hui C. Natural sample spaces and uncertain belief [J]. Journal of Personality and Social Psychology, 1992 (63): 766-780.
  • 4Girotto V, & Gonzalez M. Solving probabilistic and statis- tical problems: A matter of infomaation structure and question form[J]. Cognition, 2001, 78:247-276.
  • 5Gigerenzer, G., & Hoffrage, U. How to improve Bayesian reasoning without instruction: Frequency formats [J]. Psycho- logical Review, 1995, 102: 684-704.
  • 6Cosmides, L., & Tooby, J. Are humans good intuitive statisticians after all? Rethinking some conclusions from the lit- erature on judgment under uncertainty [J]. Cognition, 1996, 58: 1-73.
  • 7Sloman, S. A., Over, D., Slovak, L., & Stibel, J. M. Fre- quency illusions and other fallacies [J]. Organizational Behavior & Human Decision Processes, 2003, 91: 296-309.
  • 8Barbey, A. K., & Sloman, S. A. Base-rate respect: From ecological rationality to dual processes[J]. Behavioral and Brain Sciences, 2007ai 30: 241-254.
  • 9Siegrist, M., & Keller, C. Natural frequencies and Bayesian reasoning: The impact of formal education and prob- lem context LI]. Journal of Risk Research, 2011, 14: 1039-1055.
  • 10Sirota, M., & Juanchich, M. Role of numeracy and cog- nitive reflection in Bayesian inference with natural frequencies [J]. Studia Psychologica, 2011, 53: 151-161.

二级参考文献106

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部