期刊文献+

单因变量偏最小二乘回归程序设计及其应用 被引量:4

Program Design and Its Application of Partial Least Squares Regression with Single Dependent Variable
原文传递
导出
摘要 在回归分析中,自变量之间的多重共线性会严重影响回归效果,因此消除多重共线性成为回归分析中参数估计的一个重要环节。该文探讨了消除多重共线性现象的偏最小二乘回归法,并基于VB语言实现了程序的设计,最后结合某大桥GPS控制网进行高程异常拟合计算,通过与专业软件计算结果的对比,验证了该程序的可行性。 In regression analysis,the multicollinearity between the independent variables will seriously affect the regression results,thus multicollinearity elimination has become an important part in parameter estimation in regression analysis. In this paper,the partial least squares regression method which can eliminate multicollinearity phenomenon is discussed,and the corresponding program is implemented,which is based on VB( Visual Basic). Finally,combined with a bridge's GPS control network,the abnormal elevation fitting is calculated. The feasibility of the program is verified by comparison with the result which is calculated by professional software.
作者 丁立 田林亚
出处 《勘察科学技术》 2015年第1期47-51,共5页 Site Investigation Science and Technology
关键词 偏最小二乘回归 多重共线性 交叉有效性检验 简化算法 二次多项式曲面模型 高程拟合 partial least squares regression multicollinearity cross validation(CV) test simplified algorithm quadratic polynomial surface model elevation fitting
  • 相关文献

参考文献5

二级参考文献50

共引文献83

同被引文献40

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部