期刊文献+

改善的支持向量机图像分割分类器构造

Construction of Improved Image Segmentation Classifier of Support Vector Machine
下载PDF
导出
摘要 构造分类器是图像分割中重要的处理环节,论文将先验知识引入支持向量机,对支持向量机做了改善,在改善的支持向量机基础上构造实现了一个分类器,重点是将为了检验分类器的有效性,通过对UCI机器学习数据库的数据进行的实验,实验结果表明改善的支持向量机分类准确率比支传统持向量机的准确率高。 Constructing classifier is an important processing step in image segmentation .In this paper ,a prior knowl‐edge of support vectormachine is introduced ,and support vector machine is improved ,the support vector machine based on improved structure to achieve a classifier .Experiment results show that the classifier offers better classification precision than the traditional support vector machine methods through the experiment whose data from UCI machine learning database breast cancer data .
作者 李晨
出处 《计算机与数字工程》 2015年第2期316-319,共4页 Computer & Digital Engineering
关键词 先验知识 支持向量机 医学图像分割 prior knowledge support vector machine medical image segmentation
  • 相关文献

参考文献11

二级参考文献102

  • 1李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 2沈翠华,刘广利,邓乃扬.一种改进的支持向量分类方法及其应用[J].计算机工程,2005,31(8):153-154. 被引量:12
  • 3郑春颖.一种改进的SVM算法[J].航空计算技术,2005,35(2):6-8. 被引量:6
  • 4崔锦泰.小波分析导论[M].西安:西安交大出版社,1991..
  • 5VAPNIK V N.The nature of statistical learning theory[M].New York,USA:Springer-Verlag,1995:123-180.
  • 6BURGES C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 7VAPNIK V N.Statistical learning theory[M].New York,USA:Wiley,1998:52-98.
  • 8GUYON I,MATIC N,VAPNIK V N.Discovering informative patterns and data cleaning[M]// Advances in Knowledge Discovery and Data Mining.Menlo Park,CA,USA:American Association for Artificial Intelligence,1996:181-203.
  • 9LIN Chunfu,WANG Shengde.Fuzzy support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):464-471.
  • 10INOUE T,ABE S.Fuzzy support vector machines for pattern classification[C]// Proceedings of IJCNN.New York,USA:IEEE Press,2001:1449-1454.

共引文献215

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部