期刊文献+

一类具有两个区间状态时变时滞的广义离散系统的新的有界实引理

New bounded real lemma for a class of singular discrete-time systems with two interval time-varying delays in state
下载PDF
导出
摘要 针对一类具有两个区间状态时变时滞的广义离散系统,通过构造合适的李雅普诺夫函数,结合线性矩阵不等式放缩技术和时滞划分技术,得到一个新的有界实引理,从理论上将该有界实引理和一个现有结论进行了比较,结果表明,改进李雅普诺夫函数后的有界实引理比文献中的有界实引理具有更小的保守性。数值实验结果表明,当两个时滞区间上下界取值固定时,如果不对时滞区间进行划分,改进后的有界实引理和文献中的有界实引理算得的H∞性能指标是相同的;当对时滞区间划分后,利用新的方法获得的H∞性能指标小于文献中的值,而且随着时滞区间划分份数的增多,H∞性能指标会进一步减小。实例表明,本方法优于文献中已有的方法。 For a class of discrete singular systems with two interval time-varying delays in state, a new bounded real lemma is given with the linear matrix inequalities scaling techniques and delay partition technology by constructing appropriate Lyapunov functions. The proposed bounded real lemma is compared with an existing conclusion theoretically and the results show that the proposed bounded real lemma is less conservative. A numerical experiment is carried out to verify that the proposed method is superior and effective. When the bounds of two interval time-varying delays are fixed, the results of a numerical example shows that (i) if delay interval is not divided, H∞ performance index obtained by the new meth- od is the same as that by the bounded real lemma in literature; and (ii) when the time delay interval is divided, the H∞ performance index with the new way is less than that with the bounded real lemma in the literature. Furthermore, with increasing number of the delay interval division, the H∞ performance index decreases. All the results mean that the new method is better than one in the literature mentioned.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2015年第1期19-25,共7页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金青年基金资助项目(21401032) 黑龙江省教育厅科学技术研究项目(12543063)
关键词 广义时滞系统 有界实引理 时滞划分 线性矩阵不等式 singular time-delay system bounded real lemma delay partition linear matrix inequality
  • 相关文献

参考文献17

  • 1NIKOLAOS B L,MIROSLAV K. Compensation of state-dependent input delay for nonlinear systems[ J ]. IEEE Transactions on Automatic Control,2013,58(2) : 275 -289.
  • 2MAO W J. Robust stability and stabilization of discrete-time descriptor systems with uncertainties in the difference matrix[ J]. IET Control Theoryand Applications, 2012,6(17) : 2676 -2685.
  • 3SUN X,ZHANG Q L,YANG C Y,et al. Stability analysis and stabilization for discrete-time singular delay systems [ J ] . Journal of Systems Engi-neering and Electronics,2011,22(3): 482 -487.
  • 4WU Z,SU H, CHU J. Robust stability for uncertain discrete singular systems with time-varying delays[ J]. Proceedings of the Institution of Me-chanical Engineers Part I: Journal of Systems and Control Engineering, 2009, 223(5) : 713 -720.
  • 5JI X F, SU H Y, CHU J. Delay-dependent robust stability of uncertain discrete singular time-delay systems [ C] . Proceedings of the American Con-trol Conference, Minnesota: ACC, 2006 , 6 : 3843 -3848.
  • 6FENG Z G, LAM J, GAO H J, et al. Improved stability and stabilization results for discrete singular delay systems via delay partitioning[ C]. Pro-ceedings of the Joint 48th IEEE Conference on Decision and Control ( CDC) and 28th Chinese Control Conference ( CCC ) , Shanghai : IEEE,2009, 12: 7210-7215.
  • 7DU B, LAM J, SHU Z,et al. A delay-partitioning projection approach to stability analysis of continuous systems with multiple delay components[J]. IET Control Theory and Applications, 2009,3(4) : 383 -390.
  • 8LI B R, XU B G. Improved stability criteria for linear uncertain systems with interval time-varying delay [ C]. Proceedings of the Joint 48th IEEEConference on Decision and Control ( CDC) and 28th Chinese Control Conference ( CCC),Shanghai: IEEE, 2009, 12: 7169 -7174.
  • 9LIN C H, WANG J L, YANG G H, et al. Robust stabilization via state feedback for descriptor systems with uncertainties in the derivative matrix[J]. International Journal of Control, 2000, 73(5) : 407 -415.
  • 10ZHANG D Q, ZHANG Q L. On the quadratic stability of descriptor systems with uncertainties in the derivative matrixf J]. International Journalof Systems Science, 2009, 40(7) ; 695 -702.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部