期刊文献+

n阶常微分方程正周期解的存在性

Existence of positive periodic solutions for nth-order ordinary differential equations
下载PDF
导出
摘要 利用锥上的不动点指数理论,讨论n阶变系数常微分方程u(n)(t)+a(t)u(t)=f(t,u(t),u'(t),…,u(n-1)(t))正周期解的存在性,其中n≥2,a(t):R→(0,∞)连续以ω为周期,f:R×[0,∞)×Rn-1→R连续,f(t,x0,x1,…,xn-1)关于t以ω为周期。在假设f关于x0满足超线性或次线性增长条件下,获得了正ω周期解的存在性。 By using the fixed point index theory of cones, the existence of positive periodic solutions for the nth-order ordinary differential equation u(n)(t)+a(t)u(t)=f(t,u(t),u'(t),…,u(n-1)(t))is concerned, where n≥2,a(t):R→(0,∞)is a continuous function which is ω -periodic in t f:R×[0,∞)×Rn-1→R is a continuous function and f (t,x0,x1,…,xn-1)is ω -periodic in t. Some exist-ence results of positive ω - periodic solutions are obtained when f satisfies some super - linear or sublinear growth conditions on x0 ,x1 ,... ,xn-1.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2015年第1期26-31,共6页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11261053)
关键词 正周期解 N阶微分方程 不动点指数 positive periodic solution nth-order differential equation cone fixed point index
  • 相关文献

参考文献2

二级参考文献18

  • 1PeiMinghe,SungKagChang.ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR 2nTH-ORDER BOUNDARY VALUE PROBLEMS[J].Annals of Differential Equations,2005,21(2):183-191. 被引量:3
  • 2王春林,胡适耕,黄正海,程时杰.非线性项有非线性增长的高阶多点边值问题[J].应用数学,1997,10(1):37-41. 被引量:1
  • 3Leela S., Monotone method for second order periodic boundary value problems, Nonlinear Anal., 1983, 7:349-355.
  • 4Nieto J. J., Nonlinear second-order peroidic boundary value problems, J. Math, Anal. Appl., 1988, 130:22-29.
  • 5Cabada A., Nieto J. J., A generation of the monotone iterative technique for nonlinear second-order periodicboundary value problems, J. Math. Anal. Appl., 1990, 151: 181-189.
  • 6Cabada A., The method of lower and upper solutions for second, third, forth, and higher order boundaryvalue problens, J. Math. Anal. Appl., 1994, 185: 302-320.
  • 7Gossez J. P., Pmari P., Periodic solutions of a second order ordinary differential equation: anecesary andsufficient condition for nonresonance, J. Diff. Equs., 1991, 94: 67-82.
  • 8Omari P., Villari G., Zandin F., Periodic solutions of lienard equation with one-sided growth restrictions, J.Diff. Equs., 1987, 67: 278-293.
  • 9Ge Weigao, On the existence of harmonic solutions of lienard system, Nonlinear Anal., 1991, 16(2): 183-190.
  • 10Mawhin J., Willem M., Multiple solutions of the periodic boundary value problem for some forced pendulumtype equations, J. Diff. Equs., 1984, 52: 264-287.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部