期刊文献+

基于突变理论的扁拱结构非线性动力稳定分析 被引量:2

Nonlinear Dynamic Stability Analysis of Shallow Arches Based on Catastrophe Theory
原文传递
导出
摘要 通过突变理论分析扁拱结构在简谐荷载(模拟风荷载)作用下的非线性响应。在假定条件下由扁拱的偏微分运动方程得到非线性振动方程,采用增量谐波法进一步等效为尖点突变模型的标准形式;通过一系列计算数据定量分析了扁拱非线性响应的复杂特征,包括稳定区域和突跳的特点以及各参数的影响。结果表明:扁拱结构的非线性动力响应存在突变现象,跨度、矢高、荷载、阻尼比对扁拱的稳定区域均有影响,合理地选择参数可减小非线性的影响而使结构稳定。 The nonlinear dynamic stability of shallow arches is analyzed by the catastrophe theory under the action of simple harmonic load (Analog wind load). The nonlinear vibration equation is obtained from the partial differential motion equation under some assumptions, and is equivalent to the standard form of cusp catastrophic model by using incremental harmonic balance method. The complex feature of nonlinear response is analyzed quantitatively, included the characteristics of stable region and snap-through and the effects of parameters. The results show that the nonlinear dynamic response of shallow arches has the phenomenon of catastrophe. Stable region is effected by span, rise, load and damping ratio respectively, an appropriate option of parameters can decrease the influences of nonlinear and stabilize the structure.
出处 《建筑科学》 CSCD 北大核心 2015年第3期1-6,13,共7页 Building Science
基金 国家自然科学基金资助项目(51079045) 江苏高校优势学科建设工程资助项目
关键词 扁拱 非线性 简谐荷载 突变理论 shallow arch nonlinear simple harmonic load catastrophe theory
  • 相关文献

参考文献12

  • 1Austin W J, F. ASCE. In-Plane Bending and Buckling of Acrhes [J]. Journal of the Structural Division, 1971, 97 (5) : 1575- 1592.
  • 2Calhoun P R, DaDeppo D A. Nonlinear Finite Element Analysis of Clamped Arehes [ J ]. Journal of Structural Engineering, ASCE, 1983, 109(3):599-612.
  • 3CHEN Chang-new. A Finite Element Study on Bifurcation and Limit Point Buckling of Elastic-plastic Arches[ J]. Computers & Structures, 1996, 60 (2) : 189-196.
  • 4PI Yong-litt, Bradford M A, Uy B. In-plane Stability of Arches [J]. International Journal of Solids and Structures, 2002, 39 ( 1 ) : 105-205.
  • 5Bradford M A, ZHANG Y-X, Gilbert R I, et al. In-plane Nonlinear Analysis and Buckling of Tied Circular Arches [ J ]. Advances in Structural Engineering, 2006, 9 ( 3 ) : 311-319.
  • 6Bradford M A, M. ASCE, WANG T, et al. In-plane Stability of Parabolic Arches with Horizontal Spring Supports. 1: Theory [J]. Journal of Structural Engineering, 2007, 133 ( 8 ) : 1138- 1145.
  • 7Tien W M, Namachchivaya N, Malhotra N. Non-linear Dynamics of a Shallow Arch under Periodic Excitation. II : 1 : I Internal Responce [ J ]. International Journal of Non-linear Mechanics, 1994, 29(3) : 367-386.
  • 8BI Q, DAI H H. Analysis of Non-linear Dynamics and Bifurcations of a Shallow Arch Subjected to Periodic Excitation with Internal Resonance[ J]. Journal of Sound and Vibration, 2000, 233(4) : 553-567.
  • 9Breslavsky I, Avramov K V, Mikhlin Y, et al. Nonlinear Modes of Snap-through Motions of a Shallow Arch[ J]. Journal of Sound and Vibration, 2008, 311(1-2): 297-313.
  • 10陈浩军,杨润生.扁拱平面内失稳的突变模型分析[J].交通科学与工程,1991,22(4):83-88. 被引量:3

二级参考文献1

  • 1[英]桑博德 著,凌复华.突变理论入门[M]上海科学技术文献出版社,1983.

共引文献2

同被引文献27

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部