期刊文献+

应用拉曼光谱技术识别食用油的种类 被引量:8

Application of Raman spectroscopy for classification of edible oils
原文传递
导出
摘要 采用拉曼光谱技术对食用油的种类建立定性分析模型,实现快速、无损地识别食用油的种类。选取3种常用食用油(大豆油、花生油、玉米油)共87个样品采集其拉曼光谱,采用一阶导数的方法对光谱进行预处理,Norris导数法进行滤波去噪,处理后的光谱采用判别分析算法建立食用油种类识别模型,模型能够实现3种食用油的准确分类。选取大豆油、花生油、玉米油各5个样品作为测试样品,测试结果为大豆油、花生油和玉米油都能够正确地分入所属类别。结果表明,拉曼光谱结合判别分析的方法能够实现食用油种类的识别,校正模型的分类结果能达到100%,预测样本分类结果准确率为86.7%。 Raman spectroscopy is applied for rapid and non-destructive identification and classification of edible oils including soybean oil, peanut oil and corn oil (n=40). After using first derivative for preprocessing and Norris derivative for filtering the noise, we set up a qualitative analysis model with the discriminant analysis algorithm to identify the category of edible oils. The model can classify the edible oil correctly. And the test samples, every category of edible oils (soybean oil, peanut oil, corn oil) include 5 samples, can be classified into the right categories. As a result, Raman spectroscopy with discriminant analysis algorithm can be applied to identify the category of edible oils. The accuracy of the calibration model is 100% and the accuracy of the result for classification with prediction samples can reach to 86.7%.
出处 《食品科技》 CAS 北大核心 2015年第3期274-278,共5页 Food Science and Technology
基金 北京市教委科技发展重点项目(KZ201310011012) 北京市教委科技创新平台项目(PXM_2012_014213_000023) 北京市自然科学基金项目(4132008)
关键词 拉曼 食用油 判别分析 定性识别 Raman edible oil discriminant analysis qualitative identification
  • 相关文献

参考文献19

  • 1卢跃鹏,胡筱静,汪芳芳,周原,方慧文,江小明,杨永.高效液相色谱法同时测定芝麻油中芝麻素和芝麻林素含量[J].食品科技,2013,38(5):297-299. 被引量:11
  • 2Park Y W, Chang P S, Lee J H. Application of triacylglyceroland fatty acid analyses to discriminate blended sesame oilwith soybean oil[J]. Food chemistry,2010,123(2):377-383.
  • 3任小娜,毕艳兰,杨国龙,张林尚,汪学德,刘玉兰.芝麻油掺棕榈油鉴别方法的研究[J].食品工业科技,2012,33(17):317-321. 被引量:5
  • 4薛雅琳,王雪莲,张蕊,赵会义.食用植物油掺伪鉴别快速检验方法研究[J].中国粮油学报,2010,25(10):116-118. 被引量:13
  • 5Oussama A, Elabadi F, Platikanov S, et al. Detection of oliveoil adulteration using FT-IR spectroscopy and PLS withvariable importance of projection (VIP) scores[J]. Journal ofthe American Oil Chemists,Society,2012,89(10):1807-1812.
  • 6Yang H, Irudayaraj J, Paradkar M M. Discriminant analysisof edible oils and fats by FTIR, FT-NIR and FT-Ramanspectroscopy[J]. Food Chemistry,2005,93(1):25-32.
  • 7刘燕德,刘涛,孙旭东,欧阳爱国,郝勇.拉曼光谱技术在食品质量安全检测中的应用[J].光谱学与光谱分析,2010,30(11):3007-3012. 被引量:66
  • 8Morga R. Mioro-Raman spectroscopy of carbonizedsemifusinite and fusinite[J]. International Journal of CoalGeology,2011,87(3):253-267.
  • 9Krafft C, Steiner G, Beleites C, et al. Disease recognitionby infrared and Raman spectroscopy[J].Journal ofbiophotonics,2009,2(1 -2): 13-28.
  • 10Boyaci I H, Uysal R S, Temiz T, et al. A rapid methodfor determination of the origin of meat and meat productsbased on the extracted fat spectra by using of Ramanspectroscopy and chemometric method[J]. European FoodResearch and Technology,2014,238(5):845-852.

二级参考文献165

共引文献324

同被引文献118

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部