期刊文献+

风力机翼型尾缘加厚修型优化 被引量:7

OPTIMIZATION OF ENLARGING THE THICKNESS OF AIRFOIL'S TRAILING EDGE FOR WIND TURBINES
下载PDF
导出
摘要 为实现风力机专用翼型尾缘加厚修型优化,并实现优化过程的自动运行,采用ISIGHT多学科设计优化软件平台,针对钝尾缘翼型的运行特点,用切向和法向载荷系数描述翼型气动性能,基于指数混合函数法,提出翼型尾缘对称和非对称加厚优化问题,以尾缘加厚厚度为优化变量对风力机专用DU91-W2-250翼型的尾缘进行对称和非对称加厚修型优化。在ISIGHT软件平台上集成翼型生成、ICEM网格划分、Fluent流场计算、载荷计算以及遗传算法优化计算模块。优化结果表明,翼型尾缘对称和非对称加厚优化后其代表风力机叶片出力能力的切向载荷获得明显提高。翼型尾缘对称加厚优化的效果优于尾缘非对称加厚的情况。 The MDO (Multidisciplinary Design Optimization) tools of ISIGHT were applied to perform the optimization design of enlarging the thickness of airfoil' s trailing edge for wind turbines automatically. A method called mixed function of index was used to enlarge DU91-W2-250 airfoil' s trailing edge symmetrically and asymmetrically, the enlarged thickness of trailing edge was chosen as the optimization variable. So the optimization problem was put forward For the operating conditions of blunt trailing edge airfoils at the root part of wind turbine blade, this optimization was carried out. There are five modules integrated on the platform of ISIGHT, which are airfoil generation, grid generation, flow field computation, load calculation and optimization based on genetic algorithm. Optimization results showed that the tangential load of airfoil increases obviously after enlarging the thickness of airfoil' s trailing edge. The optimization results of enlarging the airfoil' s trailing edge symmetrically are better than that of enlarging the airfoil' s trailing edge asymmetrically.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2015年第3期743-748,共6页 Acta Energiae Solaris Sinica
基金 江苏省高校自然科学研究重大项目(13KJA348002) 江苏省"青蓝工程" 内蒙古工业大学风能太阳能利用技术省部共建教育部重点实验室开放基金(201402)
关键词 翼型 风力机 钝尾缘 优化 airfoil wind turbine blunt trailing edge optimization
  • 相关文献

参考文献11

二级参考文献28

  • 1夏商周,申振华.改型尾缘对翼型流场影响的数值模拟[J].沈阳航空工业学院学报,2005,22(5):1-3. 被引量:10
  • 2刘雄,陈严,叶枝全.增加风力机叶片翼型后缘厚度对气动性能的影响[J].太阳能学报,2006,27(5):489-495. 被引量:43
  • 3李秋悦,申振华.翼型进行钝尾缘修改后气动性能的数值研究[J].沈阳航空工业学院学报,2007,24(1):1-5. 被引量:11
  • 4Rooij R P J O M Van, Timmer W A. Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils. Journal of Solar Energy Engineering, 2003, 125:468-478.
  • 5Jackson K J, Zuteck M D, et al. Innovative Design Approaches for Large Wind Turbine Blades. Wind Energy, 2005, 8:141-171.
  • 6Althaus D. Niedriggeschwindigkeitsprofile. Vieweg, Braunschweig, Germany, 1986, 138-175.
  • 7Standish K J, Dam C P Van, Aerodynamic Analysis of Blunt Trailing Edge Airfoils. Journal of Solar Energy Engineering, 2003, 125:479-487.
  • 8Baker J P, Mayda E A, Dam C P Van. Experimental Analysis of Thick Blunt Trailing-Edge Wind Turbine Airfoils. Journal of Solar Energy Engineering, 2006, 128:422-431.
  • 9Bertagnolio F, Soerensen N, Johansen J, et al. Wind Turbine Airfoil Catalogue. Risoe-R-1280(EN), Denmark: Risoe National Laborary, 2001. 152.
  • 10Baker J P, Mayda E A, Van Dam C P. Experimental and computational analysis of thick flatback wind turbine airfoils [J]. AIAA 2006-193, 2006.

共引文献48

同被引文献53

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部