期刊文献+

基于绝对矩块截断编码融合Clifford代数的图像压缩

Research of Image Compression Based on Fusion of AMBTC and Clifford Algebra
下载PDF
导出
摘要 针对现有的图像压缩方法很难兼顾压缩效率和压缩后图像质量的问题,提出了一种基于绝对矩块截断编码和Clifford代数的融合方法。首先,将原始图像分为若干大小相等且互不重叠的局部小块;然后,利用绝对矩块截断编码保留每个子块的第一和第二矩;最后,利用Clifford代数将图像矩阵表示为最大完全平方和,并利用解码器重构图像。压缩实验结果表明,该方法的峰值信噪比可接近100 d B,结构相似度接近1,相比其他几种较新的方法,该方法取得了更好的压缩图像质量,并且降低了压缩耗时。 For the issue that it is hard to juggle compression efficiency and the quality of compressed image when using traditional compressed methods,a fusion method based on absolute moment block truncation coding and Clifford algebra is proposed. Firstly, original images are divided into a number of non-overlapping local small pieces with equal size. Then, absolute moment block truncation coding is used to retain the first and second moment of each sub-block. Finally, Clifford algebra is used to represent image matrix to be the largest completely squares sum, and decoder is used to reconstruct image. Experimental results show that peak signal noise ratio and structural similarity of proposed method can achieve lOOdB and 1 respectively, it has better compression quality of image and less time-consuming than several other advanced methods.
出处 《电视技术》 北大核心 2015年第6期13-17,31,共6页 Video Engineering
基金 国家自然科学基金项目(61202163) 山西省自然科学基金项目(2013011017-2)
关键词 图像压缩 绝对矩块截断编码 CLIFFORD代数 峰值信噪比 加权峰值信噪比 image eompression absolute moment block truncation coding Clifford algebra peak signal noise ratio weighted peak signal to noise ratio
  • 相关文献

参考文献5

二级参考文献66

  • 1赵永强,潘泉,张洪才.基于自适应无下采样提升框架的Stokes图像获取方法[J].光子学报,2005,34(8):1270-1273. 被引量:9
  • 2章熙春,曹燕,张军,韦岗.基于WDFT的语音PLP特征提取算法[J].模式识别与人工智能,2005,18(4):469-473. 被引量:4
  • 3朱曼洁,赵岭.基于可逆整数DCT的遥感图像的无损压缩[J].计算机工程,2006,32(21):273-274. 被引量:3
  • 4贾永红.数字图像处理[M].武汉:武汉大学出版社,2007.
  • 5Wang Z,Bovik A C,Sheikh H R,et al. Image quality as- sessment:from error visibility tostructural similarity [J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600-612.
  • 6Ferzli R, Karam L J. A no-reference objective image sh- arpness metric based on the notion of just noticeable blur (JNB)[J]. IEEE Transactions on Image Processing, 2009, 18(4) : 717-728.
  • 7Hassen R, Wang Z, Salama M. No-reference image sharp- ness assessment based on local phase coherence meas- urement[A]. Proc. of the 2010 IEEE International Confer- ence on Acoustics, Speech & Signal Processing [C]. 2010,2434-2437.
  • 8Marziliano P, Dufaux F, Winkler S, et al. Perceptual blur and ringing metrics:Applications to JPEG2000[J]. Signal Processing: Image Communication, 2004, 19 (2): 163- 172.
  • 9Narvekar N D,Karam L J. A no-reference image blur met- ric based on the cumulative probability of blur detection (CPBD) [J], IEEE Transactions on Image Processing, 2011,20(9) : 2678-2683.
  • 10Li C,Yuan W,Bovik A C,et al. No-reference blur index u- sing blur comparisons[J]. Electronics Letters, 2011,47 (17) :962-963.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部