摘要
为了探究正常人脑电β波(13-25 Hz)静息态功能连接,提出了一种结合独立成分分析(ICA)、图论、层次聚类、t检验、标准低分辨率电磁断层成像(s LORETA)技术的分析算法。对利用BP Analyzer 64导脑电仪采集的25个健康被试者在闭眼和睁眼静息状态下的高分辨率脑电信号β波(13-25 Hz)进行了功能连接研究,结果表明:(a)β波在闭眼状态下的功能连接明显多于睁眼状态;(b)从闭眼状态到睁眼状态,在右侧大脑顶叶、枕叶、颞叶区域β波功能连接明显减弱,而在双侧额叶连接增强;(c)静息态网络中的默认节点网络、视觉网络、运动感觉网络在闭眼状态下显著。因此,证明该算法适用于研究脑电β波静息态功能连接。
In order to explore normal EEG beta( 13 - 25 Hz) rhythm functional connectivity in resting state,this paper proposed an analysis algorithm which combined independent component analysis( ICA),graph theory,hierarchical cluster analysis,t-test and standardized low-resolution tomography analysis( s LORETA). It used brain vision analyzer 64 channels to record high resolution electroencephalography( EEG) signals of 25 healthy participants under botheyes-closed and eyes-open resting states. Then it used this analysis algorithmto studythe functional connectivity of beta rhythm( 13 - 25Hz). The analysis results demonstrate:( a) functional connectivity ineyes-closed state is more obvious than in eyes-open state;( b) during the course from eyes-closed to eyes-open state,functional connectivity decreases in parietal,occipital and temporal regions of right hemisphere dominantly and increases in bilateral frontal regions;( c) default mode network,visual network and sensory-motor are significant in eyes-closed state. So this analysis algorithmis suitable for studying EEG beta rhythm functional connectivity in resting state.
出处
《计算机应用研究》
CSCD
北大核心
2015年第4期1028-1031,共4页
Application Research of Computers
基金
国家重点基础研究发展计划资助项目(2014CB744603
2014CB744605)
国家自然科学基金资助项目(61105118
61272345)
北京市自然科学基金资助项目(4132023)
国家国际科技合作专项资助项目(2013DFA32180)
北京市科技新星计划资助项目(Z12111000250000
Z131107000413120)
关键词
脑电图
β波
独立成分分析
功能连接
EEG
beta rhythm
independent component analysis(ICA)
functional connectivity