期刊文献+

基于模糊结构元的最小生成树问题的求解算法 被引量:4

Algorithm of Minimum Spanning Tree Problem Based on Fuzzy Structured Element
下载PDF
导出
摘要 针对梯形模糊数,定义了一种梯形模糊结构元.研究了边权值为梯形模糊数的模糊权值网络,建立了其最小生成树问题的数学模型,并利用梯形模糊结构元加权排序思想和Kruskal算法,设计了一种该问题的求解算法,给出了算法的复杂度分析和应用实例.文中的模型和算法对于边权值为其他类型模糊数的模糊权值网络同样有效. A trapezoidal fuzzy structured element is defined for the trapezoidal fuzzy number. The minimum spanning tree problem is addressed in the fuzzy weighted network whose weight is trapezoidal fuzzy number, and a mathematical model is established for it. By adopting the idea of weighted priority of the trapezoidal fuzzy structured element and the classical kruskal algorithm, a new algorithm is designed to solve the minimum spanning tree problem in fuzzy weighted network whose weight is trapezoidal fuzzy number; the complexity analysis and practical examples of the new algorithm are also given. In addition, the mathematical model and new algorithm in the paper are as effective to other fuzzy weighted network with other fuzzy number.
作者 孙小军
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第4期806-809,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60874085)资助 陕西省自然科学基础研究计划项目(2013JM1001)资助 陕西省教育科学"十二五"规划课题(SGH140675)资助
关键词 模糊权值网络 梯形模糊结构元 KRUSKAL算法 最小生成树 fuzzy weighted network trapezoidal fuzzy structured element krustal algorithm minimum spanning tree
  • 相关文献

参考文献2

二级参考文献40

  • 1郭嗣琮.模糊实数空间与[-1,1]上同序单调函数类的同胚[J].自然科学进展,2004,14(11):1318-1321. 被引量:53
  • 2赵玉梅,陈华友.证券组合投资的多目标区间数线性规划模型[J].运筹与管理,2006,15(2):124-127. 被引量:20
  • 3Markowitz H.Portfolio selection[J].Journal of Finance,1952,(7):77-91.
  • 4Ishibuchi H,Tanaka H.Multiobjective programming in optimization of the interval objective function[J].European Journal of Operational Research,1990,(48):219-225.
  • 5Chanas S,Kuchta D.Multiobjective programming in optimization of the interval objective functions-ageneralized approach[J].European Journal of Operational Research,1996,(94):594-598.
  • 6Tong S.Interval number and fuzzy number linear programming[J].Fuzzy Sets and Systems,1994,(66):301-306.
  • 7Silvio G,Funari S,Nardelli C.An interval portfolio selection problem based on regret function[J].European Jdurnal of Operational Research,2006,(17):253-264.
  • 8Elton E J,Gruber M J.Estimating the dependence structure of share prices[J].Journal of Finance,1973,(28):1203-1232.
  • 9Sharpe W F.A simplified model for portfolio analysis[J].Management Science,1963,(9):277-293.
  • 10陈国华,陈收,汪寿阳.区间数模糊投资组合模型[J].系统工程,2007,25(8):34-37. 被引量:21

共引文献19

同被引文献23

  • 1郭嗣琮.模糊数比较与排序的结构元方法[J].系统工程理论与实践,2009,29(3):106-111. 被引量:35
  • 2Nesetrii J,Milkova E, Nesetrilova H. Otakar Boruvka on minimum spanning tree problem: Translation of both the 1926 papers, comments, history[J]. Discrete Mathematics, 2001,233 : 3-36.
  • 3Kruskal J. On the Shortest Spanning Subtree of a Graph and the Traveling sales man problem [J]. Proceedings o{ the AMS,1956,7(1) ..48-50.
  • 4Prim R C. Shortest Connection Networks and Some Generations [J]. The Bell System Technical Journal, 1957,36(6):1389-1401.
  • 5Dijkstra E W. A note on two problems in connexion with graphs [J]. Numerische Math,1959(1):269-271.
  • 6Zhaocai Wang,Dongmei Huang, Huajun Meng,et ah A new fast algorithm for solving the minimum spanning tree prob- lem based on DNA molecules computation [J]. BioSystems,2013,114(1): 1-7.
  • 7Torkestani J A, Meybodi M R. Solving the minimum spanning tree problem in stochastic graphs [J]. The Journal of Supercomputing, 2012,59(2) : 1035-1054.
  • 8Bollig B. On symbolic OBDD-based algorithms for the minimum spanning tree problem [J]. Theoretical Computer Science,2012,8(447) .- 2-12.
  • 9Leonidas S J. Pruning a minimum spanning tree [J]. Statistical Mechanics and its Applications,2012,391(8):2678-2711.
  • 10Narula S C, Ho C A. Degree-constrained Minmum Spanning Tree [J]. Computers and Operations Research, 1980,7(4): 239-249.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部