期刊文献+

基于生物电容的视觉假体无线能量传输系统建模及效率优化 被引量:2

Visual Prosthesis Wireless Power Transfer System Modeling Based on Biological Capacitance and Its Efficiency-Optimization
下载PDF
导出
摘要 为了解决视觉假体无线能量传输系统设计过程中参数选取的问题,本文进行了基于生物电容的视觉假体无线能量传输系统精确建模,并在该模型的基础上对次级线圈回路进行了优化,使能量传输效率较传统谐振耦合方法有明显提高.文中采用大、小两组线圈进行比较分析和验证,所得实验数据和建模仿真数据吻合度高,验证了所建模型的准确性及优化方案的可行性,为视觉假体临床应用线圈的选取和无线能量传输系统的设计提供了理论参考. To solve the parameter selection problem in the design of visual prosthesis w ireless pow er transfer system,this paper precisely models visual prosthesis w ireless pow er transfer system on the basis of biological capacitance. Based on this model,the secondary coil circuit of the w ireless pow er transfer system is optimized,w ith w hich the energy transfer efficiency is improved obviously compared to the traditional resonant coupling method. Experimental measurement data from the comparison and analysis betw een two different-sized coils highly match the simulation data in the modeling,and it verifies the correctness of the modeling and the feasibility of the optimization scheme,providing theoretical reference to the coil option of visual prosthesis clinical application and the design of wireless energy transfer system.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第1期104-110,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61102017) 陕西省教育厅专项科研计划(No.12JK0499) 西安理工大学博士创新基金
关键词 视觉假体 无线能量传输 生物电容 系统建模 效率优化 visual prosthesis w ireless pow er transfer biological capacitance system modeling efficiency optimization
  • 相关文献

参考文献6

二级参考文献55

  • 1陈敏思,姚素英,赵毅强,张生才,李树荣,徐江涛,王天盛.高帧频大动态范围CMOS图像传感器时序控制电路的设计与实现[J].电子学报,2004,32(11):1922-1925. 被引量:11
  • 2CRAWFORD M L. Generation of standard EM field using TEM transmission cell[ J]. IEEE Transactions on Electromagnetic Compatibility, 1974,16(4) : 189 - 195.
  • 3DLUGOSZ T, TRZASKA H. Proximity effects in EMF measurements and standards [ A ]. ⅩⅩⅧth General Assembly of International Union of Radio Science[ C]. New Delhi: International Union of Radio Science, CD Proceedings, 2005.
  • 4TRZASKA H. Calibration of directional antennas and lirnitations in their use[ J]. IEEE, Transactions on Instrumentation and Measurements, 2000,49(5) : 1112 - 1116.
  • 5DLUGOSZ T, TRZASKA H. Mutual interactions in bioelectromagnetics[ J]. The Environmentalist, 2007,27(4) :403 - 409.
  • 6DLUGOSZ T, TRZASKA H. Mutual interactions in EMF dosimetry [ A ]. Proceedings of the International Conference and COST 281 Workshop on Emerging EMF-Technologies, Potential Sensitive Group and Health[ C]. Graz: Institute of Clinical Engineering of Graz University of Technology, CD Proceeding, 2006.
  • 7Italian National Research Council. An Intemet resource for calculation of "Dielectric Properties of Body Tissues in the frequency range 10Hz- 100GHz"[DB/OL] .http://niremf.ifac. cnr. it/fissprop/, 2008-05-20.
  • 8LEBLANC D, HATCHER D, POST R D. Finite-Difference Time-Domain Front-End Utility [M]. Texas:Brooks Airforce Base,2000.
  • 9LIEDTKE R J. Principles of bioelectrical impedance analysis DB/OL]. http://www. rjlsystems. com/docs/bia info/principles/, 1997-04-10.
  • 10KANAI H, CHATTERJEE I, GANDHI O P. Human body impedance for electromagnetic hazard analysis in the VLF to MF band [ J ]. IEEE Transactions on Microwave Theory and Techniques, 1984,32( 8 ) : 763 - 772.

共引文献30

同被引文献19

  • 1JONAH O, GEORGAKOPOULOS S. Wireless powertransfer in concrete via strongly coupled magnetic resonance [ J ]. IEEE Transactions on Antennas and Propagation, 2013,61 (3) : 1378-1384.
  • 2ZHONG W, HUI S. Auxiliary, circuits for power flow control in multifrequency wireless power transfer systems with multiple receivers [ J ]. IEEE Transactions on Power Electronics, 2015,30(10) :5902-5910.
  • 3LEE S H, LORENZ R D. Development and validation of model for 95% -efficiency 220 W wireless power transfer over a 30 cm air gap[ J ]. IEEE Transactions on Industry Applications, 2011,47 (6) :2495-2504.
  • 4SASAKI K, SUGIURA S, IIZUKA H. Distance adaptation method for magnetic resonance coupling between variable capacitor-loaded parallel-wire coils [ J ]. IEEE Transactions on Microwave Theory and Techniques, 2014,62(4) :892-900.
  • 5MILLER J, ONAR O, CHINTHAVALI M. Primary-side power flow control of wireless power transfer for electric vehicle charging [ J ]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3 (1 ): 147-162.
  • 6KIM N Y, RYU Y H, CHOI J,et al. Automated adaptwe frequency tracking system for efficient mid-range wireless power transfer via magnetic resonanc coupling[ C]. 42nd Microwave Conference ( EuMC), 2012:221-224.
  • 7TECK C B, KATO M, IMURA T, et al. Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling [ J ]. IEEE Transactions on Industrial Electronics, 2013, 60 ( 9 ) : 3689-3698.
  • 8BU Y, NISHIYAMA M, UEDA T, et al. Examination of wireless power transfer combined with the utilization of distance detection[J]. IEEE Transactions on Magnetics, 2014, 50(11):1-4.
  • 9ZHONG W X, LEE C K, HUI S Y. Wireless power domino-resonator systems with noncoaxial axes and circular structures [ J ]. IEEE Transactions on Power Electronics, 2012,27 ( 11 ) :4750-4762.
  • 10LANG H D, LUDWIG A, SARRIS C D. Convex optimization of wireless power transfer systems with multiple transmitters[ J]. IEEE Transactions on Antennas and Propagation, 2014,62(9) :4623-4636.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部