期刊文献+

绝热量子优化算法研究进展 被引量:2

Survey of adiabatic quantum optimization algorithms
下载PDF
导出
摘要 绝热量子优化计算于2001年首次提出,它基于绝热量子演化研究NPC组合优化问题,是量子计算的领域热点。主要回顾了绝热量子优化算法研究领域所取得的进展,阐述绝热量子优化算法研究所采用的主要方法和关键技术,最后分析绝热量子优化计算的发展趋势。 Adiabatic quantum optimization was first proposed in 2001,which was attended to solve the NPC combinatorial optimization problems,and soon became one of the hot topics in quantum computation.This survey reviews the progress in the field of adiabatic quantum optimization in the past decade,and summarizes the key methods and techniques used in the studies of adiabatic quantum optimization algorithms.Finally,this survey is concluded by predicting the future of the field.
出处 《计算机工程与科学》 CSCD 北大核心 2015年第3期429-433,共5页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61173050)
关键词 量子优化 绝热演化 绝热量子计算 组合优化 quantum optimization adiabatic evolution adiabatic quantum computation combinatorial optimization
  • 相关文献

参考文献39

  • 1Deutseh D, Jozsa R. Rapid solution of problems by quantum computation[C] ffProc of the Royal Society of London. Se- ries A: Mathematical and Physical Sciences, 1992 : 553-558.
  • 2Shot P W. Algorithms for quantum computation: Discrete logorithms and factoring[C].ffProc of the 35th Annual Sym- posium on Foundations of Computer Science, 1994 : 124-134.
  • 3Roland J, Cerf N J. Noise resistance of adiabatic quantum computation using random matrix theory[J]. Physical Review A, 2005,71 (3) : 032330.
  • 4Ashhab S,Johansson J R, Nori F. Decoherence in a scalable adiabatic quantum computer[J]. Physical Review A, 2006,74 (5) :052330.
  • 5Tiersch M,Sehiitzhold R. Non-Markovian decoherenee in the adiabatic quantum search algorithm[J]. Physical Review A, 2007,75(6) :062313.
  • 6Amin M H S,Love P J ,Truncik C J S. Thermally assisted ad- iabatic quantum eomputation EJ3. Physical Review Letters, 2008, 100(6) :060503.
  • 7Amin M H S,Averin D V,Nesteroff J A. Deeoherence in adi- abatic quantum computation J . Physical Review A, 2009,79 (2) :022107.
  • 8Rezakhani A T, Abasto D F,Lidar D A, et al. Intrinsic geom- etry of quantum adiabatic evolution and quantum phase tran- sitions[J]. Physical Review A, 2010, 82(1) :012321.
  • 9Roland J,Cerf N J. Quantum search by local adiabatic evolu- tion[J]. Physical Review A, 2002, 65(4) :042308.
  • 10Tulsi A. Adiabatic quantum computation with a one-dimen- sional projector Hamiltonian[J]. Physical Review A, 2009, 80(5) :052328.

同被引文献21

  • 1王凌.智能优化算法及其应用[M].北京:清华大学出版社,2004.
  • 2KIRKPATRICK S C, GELATT C D, VECCHI M P, et al. Optimizationby simulated annealing[J]. Science, 1983,220 (4598) :671- 680.
  • 3HOPFIELD J J, TANK D W. Computation of decisions: A model[J]. Science, 1986,233 (4764): 625-633.
  • 4KADOWAKI T. Study of optimization problems by quantum annealing[D]. Tokyo:Tokyo Institute of Technology, 2002: 15-40.
  • 5MARTONAK R, SANTORO G E, TOSATTI E. Quantum annealing by the path-integral Monte carlo method- The two-dimensional random Ising model[J]. Physical Review B, 2002,66 (9) : 351-363.
  • 6LORENZO S, SANTORO G E. Quantum annealing of an Ising spin-glass by Green's function Monte carlo[J]. Physical Review E, 2007,75 (3) : 036703.
  • 7SARJALA M, PETAJA V, ALAVA M. Optimization in random field Ising models by quantum annealing[J]. Journal of Statistical Mechanics - Theory and Experiment, 2006,16 ( 1 ) : 79-107.
  • 8KADOWAKI T, NISHIMORI H. Quantum annealing in the transverse Ising model[J]. Physical Review E, 1998,58 (5) : 5355.
  • 9BOIXO S, ALBASH T, SPEDALIERI F M, et al. Experimental signature of programmable quantum annealing[J]. Nature Communications, 2012,4 (3) :131 - 140.
  • 10BOIXO S, RONNOW T F, ISAKO S V, et al. Evidence for quantum annealing with more than one hundred qubits [J]. Nature Physics, 2014,10(3): 218-224.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部