期刊文献+

基于信息几何的图像去噪 被引量:4

Image denoising based on information geometry
下载PDF
导出
摘要 提出一种基于信息几何的图像去噪方法,与传统的欧氏空间中去噪方法不同,基于信息几何的图像去噪方法是在流形上利用两点间的测地线距离的大小来衡量图像中两像素点之间的相似性。流形中的点是通过图像中某区域构建的高斯模型,模型间的测地线距离表示两图像区域平均灰度强度和细节丰富程度的差别。这样将区域的平均灰度强度和细节丰富程度的差别作为像素点间的相似性,能够更加准确地衡量像素点间相似性的差异。实验表明,该算法提高了图像去噪效果,能够很好地保持图像细节。 We present an image denoising method based on information geometry.Different than the traditional Euclidean space image denoising,the image denoising method based on information geometry makes use of manifold geodesic distance between two points to measure the similarities between two pixels in an image.The points on manifold are built by the Gaussian model of a region in an image and the geodesic distance between models represents the differences of average gray intensity and the detailed richness of the two image regions,in which way the similarities between pixels could be measured more accurately.Experiments show that the algorithm improves the denoising effect and maintains good image details.
出处 《计算机工程与科学》 CSCD 北大核心 2015年第3期589-593,共5页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61103082)
关键词 信息几何 流形 测地线距离 高斯模型 滤波 information geometry manifold geodesic distance Gaussian model filtering
  • 相关文献

参考文献14

  • 1Luisier F, Blu T, Unser M. Image denoising in mixed pois- son--Gaussian noise[J]. IEEE Transactions on Image Pro- cessing, 2011,20(2) :696-708.
  • 2Thorstensen N, Scherzer O. Convergence of variational reg- ularization methods for imaging on Riemannian manifolds[J]. Inverse Problems, 2012,28(1) :1-21.
  • 3Yaroslavsky L P. Digital picture processing--an introduction [M]. NewYork:Springer Verlag, 1985.
  • 4Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C] //Proc of the 6th International Conference on Computer Vision (ICCV), 1988 : 839-846.
  • 5Tian C, Krishnan S. Accelerated bilateral filtering with block skipping[J]. IEEE Signal Processing Letters, 2013, 20(5) :419-422.
  • 6Chaudhury K N, Sageand D, Unser M. Fast O(1) bilateral- filtering using trigonometric range kernels[J]. IEEE Transac- tions on Image Processing, 2011,20(12) 13376-3382.
  • 7Amari S. Information geometry of statistical inference-an o- verview[C]// IEEE InformationTheory Workshop, 2002 : 86-89.
  • 8Amari S, Nagaoka H. Methods of information geometry [M]. New York Oxford University Press, 2000.
  • 9Amari S. Information geometry on hierarchy of probability distributions[J]. IEEE Transactions on Information Theory, 2001, 47(5):1701-1711.
  • 10Amari S. Information geometry on hierarchy of probability distributions[J]. IEEE Transactions on Information Theo- ry, 2001, 47(5):1701-1711.

同被引文献24

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部