期刊文献+

基于EMD的谱峭度方法在滚动轴承故障检测中的应用 被引量:2

Application of Spectral Kurtosis Approach Based on EMD in Fault Detection of Rolling Element Bearings
下载PDF
导出
摘要 针对传统谱峭度方法中短时傅里叶变换不能保证对瞬态脉冲这种高度非平稳信号最优分解效果的问题,提出一种基于经验模式分解的谱峭度方法;该方法首先利用经验模式分解和Hilbert变换得到信号的时频分布,然后将信号的时频分布按照不同层数分成若干频段,通过计算各频段的峭度值得到相应的峭度图,再根据峭度最大原则选择滤波频段进行带通滤波,最后对滤波信号采用包络分析确定故障信息;实验结果表明:相比基于短时傅里叶变换的谱峭度方法,文章方法更能准确的获得轴承加速度信号的故障特征频率信息。 Traditional spectral kurtosis method is commonly implemented by kurtogram based on short time Fourier transform (STFT). But the STFT does not guarantee the best decomposition effect on the transient pulse such as the highly non--stationary signal. A spectral kurtosis approach based on empirical mode decomposition (EMD) is proposed for above shortcoming. In this method, firstly, EMD and Hil- bert transform are used to obtain the signal time--frequency distribution; then the time--frequency distribution was decomposed into several frequency bands according to different layers, and the kurtogram is obtained by calculating the kurtosis of each frequency band~ and then the filtering frequency band is selected to bandpass filter according to the maximum kurtosis principle; finally, envelope analysis is used to determine the fault information of the filtered signal. It can be seen from the experimental results that: the more accurate information of fault characteristic frequency with the bearing acceleration signal is obtained compared to the traditional spectral kurtosis approach based on STFT.
出处 《计算机测量与控制》 2015年第3期696-698,共3页 Computer Measurement &Control
基金 总装备部武器装备预研基金(9140A27020212JB14311)
关键词 短时傅里叶变换 经验模式分解 谱峭度 峭度图 short time Fourier transform , empirical mode decomposition spectral kurtosis kurtogram
  • 相关文献

参考文献9

  • 1Antoni J. The spectral kurtosis: a use{ul tool for characterising non --stationary signals [J]. Mechanical Systems and Signal Process- ing, 2006, 20 (2): 282-307.
  • 2Antoni J, Randall R B. The spectral kurtosis~ application to the vi- bratory surveillance and diagnostics of rotating machines [J]. Me- chanical Systems and Signal Processing, 2006, 20 (2) : 308 - 331.
  • 3Antoni J. Fast computation of the kurtogram for the detection of transient faults [J]. Mechanical Systems and Signal Processing, 2007. 21 (1): 108-124.
  • 4石林锁,张亚洲,米文鹏.基于WVD的谱峭度法在轴承故障诊断中的应用[J].振动.测试与诊断,2011,31(1):27-31. 被引量:33
  • 5程军圣,杨怡,杨宇.基于LMD的谱峭度方法在齿轮故障诊断中的应用[J].振动与冲击,2012,31(18):20-23. 被引量:33
  • 6Huang N E, Shen Z, Long S R, et al. The empirical mode decom- position and the Hilbert spectrum for nonlinear and non--stationary time series analysis [A]. Proceedings of the Royal Society of Lon don, Series A: Mathematical, Physical and Engineering Sciences [C]. 1998, 454 (1971): 903-995.
  • 7Barszez T, Randall R B. Application of spectral kurtosis for detec- tion of a tooth crack in the planetary gear of a wind turbine[J]. Mechanical Systems and Signal Processing, 2009, 23 (4): 1352 - 1365.
  • 8The Case Western Reserve University Bearing Data Center Website [- DB/OL J. http: //csegroups. case. edu/bearingdataeenter/pa ges/download-- data-- file.
  • 9苏文胜,王奉涛,张志新,郭正刚,李宏坤.EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J].振动与冲击,2010,29(3):18-21. 被引量:253

二级参考文献36

  • 1石林锁.滚动轴承故障检测的改进包络分析法[J].轴承,2006(2):36-39. 被引量:17
  • 2胡红英,马孝江.基于局域波分解的信号降噪算法[J].农业机械学报,2006,37(1):118-120. 被引量:26
  • 3梅宏斌.滚动轴承振动监测与诊断--理论·方法·系统[M].北京:机械工业出版社,1996.
  • 4Ho D, Randall R B. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals [ J ]. Mechanical Systems and Signal Processing, 2000, 14 (5) : 763 - 788.
  • 5Nikolaou N G, Antoniadis I A. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelet [J]. Mechanical Systems and Signal Processing, 2002,16 (4) : 677 - 694.
  • 6Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proc. R. Soc, 1998,454:903 - 905.
  • 7Dwyer R F. Detection of non-Gaussian signals by frequency domain kurtosis estimation[ C ]. International Conference On Acoustics, Speech, and Signal Processing, Boston, 1983, 607 - 610.
  • 8Antoni J. The spectral kurtosis: A useful tool for characterising non-stationary signals [J]. Mechanical Systems and Signal Processing, 2006,20:282 - 307.
  • 9Antoni J, Randall R B, The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines [ J ]. Mechanical Systems and Signal Processing, 2006, 20 : 308 - 331.
  • 10Antoni J. Fast computation of the kurtogram for the detection of transient faults [ J ]. Mechanical Systems and Signal Processing, 2007,21 : 108 - 124.

共引文献304

同被引文献17

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部